These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Synchronization of Van der Pol oscillators in a thermal bath. Ruan D; Liu J; Wu C Phys Rev E; 2023 Aug; 108(2-1):024207. PubMed ID: 37723705 [TBL] [Abstract][Full Text] [Related]
3. Driven generalized quantum Rayleigh-van der Pol oscillators: Phase localization and spectral response. Sudler AJ; Talukdar J; Blume D Phys Rev E; 2024 May; 109(5-1):054207. PubMed ID: 38907472 [TBL] [Abstract][Full Text] [Related]
4. Quantum synchronization of quantum van der Pol oscillators with trapped ions. Lee TE; Sadeghpour HR Phys Rev Lett; 2013 Dec; 111(23):234101. PubMed ID: 24476274 [TBL] [Abstract][Full Text] [Related]
5. Variational principle for limit cycles of the Rayleigh-van der Pol equation. Benguria RD; Depassier MC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):4889-93. PubMed ID: 11969440 [TBL] [Abstract][Full Text] [Related]
6. Chimeralike states in a network of oscillators under attractive and repulsive global coupling. Mishra A; Hens C; Bose M; Roy PK; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062920. PubMed ID: 26764787 [TBL] [Abstract][Full Text] [Related]
7. Solution of quantum Langevin equation: approximations, theoretical and numerical aspects. Banerjee D; Bag BC; Banik SK; Ray DS J Chem Phys; 2004 May; 120(19):8960-72. PubMed ID: 15267831 [TBL] [Abstract][Full Text] [Related]
8. Quantum Brownian motion: Drude and Ohmic baths as continuum limits of the Rubin model. Das A; Dhar A; Santra I; Satpathi U; Sinha S Phys Rev E; 2020 Dec; 102(6-1):062130. PubMed ID: 33466102 [TBL] [Abstract][Full Text] [Related]
9. Nontrivial amplitude death in coupled parity-time-symmetric Liénard oscillators. Singh U; Raina A; Chandrasekar VK; Senthilkumar DV Phys Rev E; 2021 Nov; 104(5-1):054204. PubMed ID: 34942732 [TBL] [Abstract][Full Text] [Related]
11. Unusual Liénard-type nonlinear oscillator. Chandrasekar VK; Senthilvelan M; Lakshmanan M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066203. PubMed ID: 16486036 [TBL] [Abstract][Full Text] [Related]
12. Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der Pol oscillators. Das S; Maharatna K Comput Methods Programs Biomed; 2013 Dec; 112(3):490-507. PubMed ID: 24028797 [TBL] [Abstract][Full Text] [Related]
13. Semiclassical optimization of entrainment stability and phase coherence in weakly forced quantum limit-cycle oscillators. Kato Y; Nakao H Phys Rev E; 2020 Jan; 101(1-1):012210. PubMed ID: 32069673 [TBL] [Abstract][Full Text] [Related]
14. A definition of the asymptotic phase for quantum nonlinear oscillators from the Koopman operator viewpoint. Kato Y; Nakao H Chaos; 2022 Jun; 32(6):063133. PubMed ID: 35778147 [TBL] [Abstract][Full Text] [Related]
15. Critical Response of a Quantum van der Pol Oscillator. Dutta S; Cooper NR Phys Rev Lett; 2019 Dec; 123(25):250401. PubMed ID: 31922802 [TBL] [Abstract][Full Text] [Related]
16. Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment. Chou CH; Yu T; Hu BL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011112. PubMed ID: 18351823 [TBL] [Abstract][Full Text] [Related]
17. Quantum thermodynamics of systems with anomalous dissipative coupling. Cuccoli A; Fubini A; Tognetti V; Vaia R Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066124. PubMed ID: 11736253 [TBL] [Abstract][Full Text] [Related]
18. Dissipation of classical energy in nonlinear quantum systems. Pereverzev A; Pereverzev YV; Prezhdo OV J Chem Phys; 2008 Apr; 128(13):134107. PubMed ID: 18397053 [TBL] [Abstract][Full Text] [Related]
19. Oscillation collapse in coupled quantum van der Pol oscillators. Ishibashi K; Kanamoto R Phys Rev E; 2017 Nov; 96(5-1):052210. PubMed ID: 29347706 [TBL] [Abstract][Full Text] [Related]
20. Entanglement tongue and quantum synchronization of disordered oscillators. Lee TE; Chan CK; Wang S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022913. PubMed ID: 25353551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]