These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33601557)

  • 21. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression mechanism of Kelvin-Helmholtz instability in compressible fluid flows.
    Karimi M; Girimaji SS
    Phys Rev E; 2016 Apr; 93():041102. PubMed ID: 27176246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.
    Li Q; He YL; Wang Y; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056705. PubMed ID: 18233788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method.
    Shirsat AU; Nayak SG; Patil DV
    Phys Rev E; 2022 Aug; 106(2-2):025314. PubMed ID: 36109898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-attenuation of extreme events in Navier-Stokes turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Nat Commun; 2020 Nov; 11(1):5852. PubMed ID: 33203875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Underlying mechanism of numerical instability in large-eddy simulation of turbulent flows.
    Ida M; Taniguchi N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046701. PubMed ID: 15169125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral modeling of magnetohydrodynamic turbulent flows.
    Baerenzung J; Politano H; Ponty Y; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026310. PubMed ID: 18850939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows.
    Yuan X; Liang H; Chai Z; Shi B
    Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element generation of sibilants /s/ and /z/ using random distributions of Kirchhoff vortices.
    Pont A; Guasch O; Arnela M
    Int J Numer Method Biomed Eng; 2020 Feb; 36(2):e3302. PubMed ID: 31883313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular viscosity and diffusivity effects in transitional and shock-driven mixing flows.
    Pereira FS; Grinstein FF; Israel DM; Rauenzahn R
    Phys Rev E; 2021 Jan; 103(1-1):013106. PubMed ID: 33601565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fully Compressible Low-Mach Number Simulations of Carbon-dioxide at Supercritical Pressures and Trans-critical Temperatures.
    Sengupta U; Nemati H; Boersma BJ; Pecnik R
    Flow Turbul Combust; 2017; 99(3):909-931. PubMed ID: 30069161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/
    Bolis A; Cantwell CD; Moxey D; Serson D; Sherwin SJ
    Comput Phys Commun; 2016 Sep; 206():17-25. PubMed ID: 27594707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preconditioned lattice-Boltzmann method for steady flows.
    Guo Z; Zhao TS; Shi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066706. PubMed ID: 15697552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A passive Stokes flow rectifier for Newtonian fluids.
    Mehboudi A; Yeom J
    Sci Rep; 2021 May; 11(1):10182. PubMed ID: 33986400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-dimensional representations of exact coherent states of the Navier-Stokes equations from the resolvent model of wall turbulence.
    Sharma AS; Moarref R; McKeon BJ; Park JS; Graham MD; Willis AP
    Phys Rev E; 2016 Feb; 93(2):021102. PubMed ID: 26986280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.