These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33601557)

  • 41. Self-consistent feedback mechanism for the sudden viscous dissipation of finite-Mach-number compressing turbulence.
    Campos A; Morgan BE
    Phys Rev E; 2019 Jan; 99(1-1):013107. PubMed ID: 30780379
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence.
    Wang J; Wan M; Chen S; Xie C; Chen S
    Phys Rev E; 2018 Apr; 97(4-1):043108. PubMed ID: 29758607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.
    Richter C; Kotz F; Giselbrecht S; Helmer D; Rapp BE
    Biomed Microdevices; 2016 Jun; 18(3):52. PubMed ID: 27233665
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supersonic turbulent flow simulation using a scalable parallel modal discontinuous Galerkin numerical method.
    Houba T; Dasgupta A; Gopalakrishnan S; Gosse R; Roy S
    Sci Rep; 2019 Oct; 9(1):14442. PubMed ID: 31594959
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of multicomponent lattice Boltzmann flux solver for simulation of compressible viscous reacting flows.
    Yang T; Wang J; Yang L; Shu C
    Phys Rev E; 2019 Sep; 100(3-1):033315. PubMed ID: 31639947
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body.
    Yao HD; Davidson L
    J Acoust Soc Am; 2019 May; 145(5):3163. PubMed ID: 31153304
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.
    Su W; Lindsay S; Liu H; Wu L
    Phys Rev E; 2017 Aug; 96(2-1):023309. PubMed ID: 28950559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems.
    Kumar M; Natarajan G
    Phys Rev E; 2019 May; 99(5-1):053304. PubMed ID: 31212515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations.
    Kim TY; Cassiani M; Albertson JD; Dolbow JE; Fried E; Gurtin ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045307. PubMed ID: 19518292
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GPU Optimization for High-Quality Kinetic Fluid Simulation.
    Chen Y; Li W; Fan R; Liu X
    IEEE Trans Vis Comput Graph; 2022 Sep; 28(9):3235-3251. PubMed ID: 33591918
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulations of co-axial jet flows on graphics processing units: the flow and noise analysis.
    Markesteijn AP; Karabasov SA
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190083. PubMed ID: 31607254
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonlinear flows in nearly incompressible hydrodynamic fluids.
    Dastgeer S; Zank GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066309. PubMed ID: 15244728
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct velocity measurements in high-temperature non-ideal vapor flows.
    Gallarini S; Cozzi F; Spinelli A; Guardone A
    Exp Fluids; 2021; 62(10):199. PubMed ID: 34720379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impulse Fluid Simulation.
    Feng F; Liu J; Xiong S; Yang S; Zhang Y; Zhu B
    IEEE Trans Vis Comput Graph; 2023 Jun; 29(6):3081-3092. PubMed ID: 35133965
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.
    Fambri F; Dumbser M; Casulli V
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1170-98. PubMed ID: 24842268
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Steady flow through a constricted cylinder by multiparticle collision dynamics.
    Bedkihal S; Kumaradas JC; Rohlf K
    Biomech Model Mechanobiol; 2013 Oct; 12(5):929-39. PubMed ID: 23179247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flow behavior of periodical electroosmosis in microchannel for biochips.
    Wang X; Wu J
    J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of an unstructured grid algorithm to artificial heart valve simulations.
    Hsu AT; Yun JX; Hwang NH
    ASAIO J; 1999; 45(6):581-6. PubMed ID: 10593690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.