These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33601561)

  • 1. Geometric allocation approach to accelerating directed worm algorithm.
    Suwa H
    Phys Rev E; 2021 Jan; 103(1-1):013308. PubMed ID: 33601561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lifted directed-worm algorithm.
    Suwa H
    Phys Rev E; 2022 Nov; 106(5-2):055306. PubMed ID: 36559387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed geometrical worm algorithm applied to the quantum rotor model.
    Alet F; Sørensen ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026702. PubMed ID: 14525143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical dynamics of cluster algorithms in the random-bond Ising model.
    Kanbur U; Vatansever ZD
    Phys Rev E; 2024 Feb; 109(2-1):024140. PubMed ID: 38491603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual geometric worm algorithm for two-dimensional discrete classical lattice models.
    Hitchcock P; Sørensen ES; Alet F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016702. PubMed ID: 15324199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Worm-type Monte Carlo simulation of the Ashkin-Teller model on the triangular lattice.
    Lv JP; Deng Y; Chen QH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021125. PubMed ID: 21928967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markov chain Monte Carlo method without detailed balance.
    Suwa H; Todo S
    Phys Rev Lett; 2010 Sep; 105(12):120603. PubMed ID: 20867621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Irreversible Monte Carlo Samplers.
    Faizi F; Deligiannidis G; Rosta E
    J Chem Theory Comput; 2020 Apr; 16(4):2124-2138. PubMed ID: 32097548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling.
    Nishikawa Y; Michel M; Krauth W; Hukushima K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063306. PubMed ID: 26764852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic critical exponent z of the three-dimensional Ising universality class: Monte Carlo simulations of the improved Blume-Capel model.
    Hasenbusch M
    Phys Rev E; 2020 Feb; 101(2-1):022126. PubMed ID: 32168572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional Brownian motion of worms in worm algorithms for frustrated Ising magnets.
    Rakala G; Damle K; Dhar D
    Phys Rev E; 2021 Jun; 103(6-1):062101. PubMed ID: 34271608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cluster dynamics for the random-cluster model.
    Deng Y; Qian X; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036707. PubMed ID: 19905246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic critical behavior of the worm algorithm for the Ising model.
    Deng Y; Garoni TM; Sokal AD
    Phys Rev Lett; 2007 Sep; 99(11):110601. PubMed ID: 17930423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valence-bond quantum Monte Carlo algorithms defined on trees.
    Deschner A; Sørensen ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033304. PubMed ID: 25314561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of cluster algorithms for the bond-diluted Ising model.
    Kole AH; Barkema GT; Fritz L
    Phys Rev E; 2022 Jan; 105(1-2):015313. PubMed ID: 35193318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium-relaxation approach to quantum phase transitions: Nontrivial critical relaxation in cluster-update quantum Monte Carlo.
    Nonomura Y; Tomita Y
    Phys Rev E; 2020 Mar; 101(3-1):032105. PubMed ID: 32289992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo static and dynamic simulations of a three-dimensional Ising critical model.
    Livet F
    Phys Rev E; 2020 Feb; 101(2-1):022131. PubMed ID: 32168585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Monte Carlo algorithm in quasi-one-dimensional Ising spin systems.
    Nakamura T
    Phys Rev Lett; 2008 Nov; 101(21):210602. PubMed ID: 19113399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster Monte Carlo simulation of the transverse Ising model.
    Blöte HW; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066110. PubMed ID: 12513350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model.
    Ferrenberg AM; Xu J; Landau DP
    Phys Rev E; 2018 Apr; 97(4-1):043301. PubMed ID: 29758673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.