These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33601561)

  • 21. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation.
    Deng Y; Blöte HW; Nienhuis B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo algorithm for simulating the O(N) loop model on the square lattice.
    Silva AM; Schakel AM; Vasconcelos GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):021301. PubMed ID: 24032768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Backbone and shortest-path exponents of the two-dimensional Q-state Potts model.
    Fang S; Ke D; Zhong W; Deng Y
    Phys Rev E; 2022 Apr; 105(4-1):044122. PubMed ID: 35590541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo study of the triangular lattice gas with first- and second-neighbor exclusions.
    Zhang W; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031103. PubMed ID: 18850989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation algorithms for the random-cluster model.
    Qian X; Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016709. PubMed ID: 15697766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generalized directed loop method for quantum Monte Carlo simulations.
    Alet F; Wessel S; Troyer M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036706. PubMed ID: 15903632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo algorithm for free energy calculation.
    Bi S; Tong NH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013310. PubMed ID: 26274310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reptation quantum Monte Carlo algorithm for lattice Hamiltonians with a directed-update scheme.
    Carleo G; Becca F; Moroni S; Baroni S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046710. PubMed ID: 21230415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lifted worm algorithm for the Ising model.
    Elçi EM; Grimm J; Ding L; Nasrawi A; Garoni TM; Deng Y
    Phys Rev E; 2018 Apr; 97(4-1):042126. PubMed ID: 29758763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coarse-grained loop algorithms for Monte Carlo simulation of quantum spin systems.
    Harada K; Kawashima N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056705. PubMed ID: 12513635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum Monte Carlo study of the spin-1/2 honeycomb Heisenberg model with mixed antiferromagnetic and ferromagnetic interactions in external magnetic fields.
    Huang YZ; Su G
    Phys Rev E; 2017 May; 95(5-1):052147. PubMed ID: 28618482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations.
    Szukowski G; Kamieniarz G; Musiał G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Worm algorithms for classical statistical models.
    Prokof'ev N; Svistunov B
    Phys Rev Lett; 2001 Oct; 87(16):160601. PubMed ID: 11690196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational study of a multistep height model.
    Drake M; Machta J; Deng Y; Abraham D; Newman C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061104. PubMed ID: 23005048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cluster Monte Carlo algorithm for the quantum rotor model.
    Alet F; Sørensen ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):015701. PubMed ID: 12636557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model.
    da Silva R; Alves N; Drugowich de Felício JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012131. PubMed ID: 23410307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probability-changing cluster algorithm for Potts models.
    Tomita Y; Okabe Y
    Phys Rev Lett; 2001 Jan; 86(4):572-5. PubMed ID: 11177884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possibility of Fisher renormalization of the critical exponents in an Ising fluid.
    Fenz W; Folk R; Mryglod IM; Omelyan IP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061504. PubMed ID: 17677266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical exponents of the superfluid-Bose-glass transition in three dimensions.
    Yao Z; da Costa KP; Kiselev M; Prokof'ev N
    Phys Rev Lett; 2014 Jun; 112(22):225301. PubMed ID: 24949775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.