These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33601564)

  • 1. Hydrodynamic interactions between swimming microorganisms in a linearly density stratified fluid.
    More RV; Ardekani AM
    Phys Rev E; 2021 Jan; 103(1-1):013109. PubMed ID: 33601564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic interaction of swimming organisms in an inertial regime.
    Li G; Ostace A; Ardekani AM
    Phys Rev E; 2016 Nov; 94(5-1):053104. PubMed ID: 27967048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic interaction of microswimmers near a wall.
    Li GJ; Ardekani AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alignment and propulsion of squirmer pusher-puller dumbbells.
    Clopés J; Gompper G; Winkler RG
    J Chem Phys; 2022 May; 156(19):194901. PubMed ID: 35597650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid.
    Li GJ; Karimi A; Ardekani AM
    Rheol Acta; 2014 Dec; 53(12):911-926. PubMed ID: 26855446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls.
    Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D
    Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of a Dumbbell Micro-Swimmer.
    Ishikawa T
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion.
    Clopés J; Gompper G; Winkler RG
    Soft Matter; 2020 Dec; 16(47):10676-10687. PubMed ID: 33089276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swimming Mode of Two Interacting Squirmers under Gravity in a Narrow Vertical Channel.
    Guan G; Lin J; Nie D
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Densitaxis: Active particle motion in density gradients.
    Shaik VA; Elfring GJ
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2405466121. PubMed ID: 38935563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions.
    Bárdfalvy D; Anjum S; Nardini C; Morozov A; Stenhammar J
    Phys Rev Lett; 2020 Jul; 125(1):018003. PubMed ID: 32678625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Settling mode of a bottom-heavy squirmer in a narrow vessel.
    Tingting Q; Jianzhong L; Zhenyu O; Jue Z
    Soft Matter; 2023 Jan; 19(4):652-669. PubMed ID: 36597923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid.
    Yazdi S; Ardekani AM; Borhan A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043002. PubMed ID: 25375589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced-order model for inertial locomotion of a slender swimmer.
    Mahalinkam R; Gong F; Khair AS
    Phys Rev E; 2018 Apr; 97(4-1):043102. PubMed ID: 29758634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct numerical simulations of a microswimmer in a viscoelastic fluid.
    Kobayashi T; Jung G; Matsuoka Y; Nakayama Y; Molina JJ; Yamamoto R
    Soft Matter; 2023 Sep; 19(37):7109-7121. PubMed ID: 37694444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective dynamics in a monolayer of squirmers confined to a boundary by gravity.
    Kuhr JT; Rühle F; Stark H
    Soft Matter; 2019 Jul; 15(28):5685-5694. PubMed ID: 31246219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Reynolds-number swimming at pycnoclines.
    Doostmohammadi A; Stocker R; Ardekani AM
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3856-61. PubMed ID: 22355147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of a chiral swimmer sedimenting on a flat plate.
    Fadda F; Molina JJ; Yamamoto R
    Phys Rev E; 2020 May; 101(5-1):052608. PubMed ID: 32575256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.