These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33601566)

  • 21. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.
    Tong M; Cole K; Brito-Parada PR; Neethling S; Cilliers JJ
    Langmuir; 2017 Apr; 33(15):3839-3846. PubMed ID: 28345923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced drainage and coarsening in aqueous foams.
    Vera MU; Durian DJ
    Phys Rev Lett; 2002 Feb; 88(8):088304. PubMed ID: 11863979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening.
    Maestro A; Rio E; Drenckhan W; Langevin D; Salonen A
    Soft Matter; 2014 Sep; 10(36):6975-83. PubMed ID: 24832218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The von Neumann relation generalized to coarsening of three-dimensional microstructures.
    MacPherson RD; Srolovitz DJ
    Nature; 2007 Apr; 446(7139):1053-5. PubMed ID: 17460667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coarsening of three-dimensional grains in crystals, or bubbles in dry foams, tends towards a universal, statistically scale-invariant regime.
    Thomas GL; de Almeida RM; Graner F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021407. PubMed ID: 17025425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth and Detachment of Oxygen Bubbles Induced by Gold-Catalyzed Decomposition of Hydrogen Peroxide.
    Lv P; Le The H; Eijkel J; Van den Berg A; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(38):20769-20776. PubMed ID: 28983387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coarsening foams robustly reach a self-similar growth regime.
    Lambert J; Mokso R; Cantat I; Cloetens P; Glazier JA; Graner F; Delannay R
    Phys Rev Lett; 2010 Jun; 104(24):248304. PubMed ID: 20867343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamical transition in a jammed state of a quasi-two-dimensional foam.
    Kurita R; Furuta Y; Yanagisawa N; Oikawa N
    Phys Rev E; 2017 Jun; 95(6-1):062613. PubMed ID: 28709314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gas and liquid transport in steady-state aqueous foam.
    Feitosa K; Durian DJ
    Eur Phys J E Soft Matter; 2008 Jul; 26(3):309-16. PubMed ID: 18516492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coarsening dynamics of the one-dimensional Cahn-Hilliard model.
    Argentina M; Clerc MG; Rojas R; Tirapegui E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046210. PubMed ID: 15903773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Experimental and Numerical Investigation on Bubble Growth in Polymeric Foams.
    Tammaro D; Villone MM; D'Avino G; Maffettone PL
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linear and non-linear wall friction of wet foams.
    Le Merrer M; Lespiat R; Höhler R; Cohen-Addad S
    Soft Matter; 2015 Jan; 11(2):368-81. PubMed ID: 25387164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrical conductivity of quasi-two-dimensional foams.
    Yazhgur P; Honorez C; Drenckhan W; Langevin D; Salonen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042301. PubMed ID: 25974485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stray-field NMR diffusion q-space diffraction imaging of monodisperse coarsening foams.
    Smith K; Burbidge A; Apperley D; Hodgkinson P; Markwell FA; Topgaard D; Hughes E
    J Colloid Interface Sci; 2016 Aug; 476():20-28. PubMed ID: 27179175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaling Laws in the Dynamics of Collapse of Single Bubbles and 2D Foams.
    Dominguez C; Leyes MF; Cuenca VE; Ritacco HA
    Langmuir; 2020 Dec; 36(50):15386-15395. PubMed ID: 33284632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.
    Katgert G; Latka A; Möbius ME; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066318. PubMed ID: 19658605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activating Bubble's Escape, Coalescence, and Departure under an Electric Field Effect.
    Yan R; Pham R; Chen CL
    Langmuir; 2020 Dec; 36(51):15558-15571. PubMed ID: 33332129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.
    Carugo D; Ankrett DN; Zhao X; Zhang X; Hill M; O'Byrne V; Hoad J; Arif M; Wright DD; Lewis AL
    Phlebology; 2016 May; 31(4):283-95. PubMed ID: 26036246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.