These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33601596)

  • 1. Evaluating diffusion resistance of a constriction in a membrane channel by the method of boundary homogenization.
    Skvortsov AT; Dagdug L; Berezhkovskii AM; MacGillivray IR; Bezrukov SM
    Phys Rev E; 2021 Jan; 103(1-1):012408. PubMed ID: 33601596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-dimensional description of diffusion in a tube of abruptly changing diameter: Boundary homogenization based approach.
    Berezhkovskii AM; Barzykin AV; Zitserman VY
    J Chem Phys; 2009 Dec; 131(22):224110. PubMed ID: 20001027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach.
    Dagdug L; Berezhkovskii AM; Skvortsov AT
    J Chem Phys; 2015 Jun; 142(23):234902. PubMed ID: 26093574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability and diffusion resistance of porous membranes: Analytical theory and its numerical test.
    Skvortsov AT; Dagdug L; Hilder EF; Berezhkovskii AM; Bezrukov SM
    J Chem Phys; 2023 Feb; 158(5):054114. PubMed ID: 36754803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state flux of diffusing particles to a rough boundary formed by absorbing spikes periodically protruding from a reflecting base.
    Skvortsov AT; Berezhkovskii AM; Dagdug L
    J Chem Phys; 2019 May; 150(19):194109. PubMed ID: 31117790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memoryless control of boundary concentrations of diffusing particles.
    Singer A; Schuss Z; Nadler B; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061106. PubMed ID: 15697340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary homogenization for trapping by patchy surfaces.
    Berezhkovskii AM; Makhnovskii YA; Monine MI; Zitserman VY; Shvartsman SY
    J Chem Phys; 2004 Dec; 121(22):11390-4. PubMed ID: 15634098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion-limited binding to a site on the wall of a membrane channel.
    Dagdug L; Berezhkovskii AM
    J Chem Phys; 2006 Dec; 125(24):244705. PubMed ID: 17199366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective diffusivity of a Brownian particle in a two-dimensional periodic channel of abruptly alternating width.
    Dagdug L; Berezhkovskii AM; Zitserman VY; Bezrukov SM
    Phys Rev E; 2021 Jun; 103(6-1):062106. PubMed ID: 34271681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping of diffusive particles by rough absorbing surfaces: boundary smoothing approach.
    Skvortsov A; Walker A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023202. PubMed ID: 25215838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blocker Effect on Diffusion Resistance of a Membrane Channel: Dependence on the Blocker Geometry.
    Dagdug L; Skvortsov AT; Berezhkovskii AM; Bezrukov SM
    J Phys Chem B; 2022 Aug; 126(32):6016-6025. PubMed ID: 35944244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic diffusion resistance of a membrane channel, mean first-passage times between its ends, and equilibrium unidirectional fluxes.
    Berezhkovskii AM; Bezrukov SM
    J Chem Phys; 2022 Feb; 156(7):071103. PubMed ID: 35183069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary homogenization for trapping patchy particles.
    Lawley SD
    Phys Rev E; 2019 Sep; 100(3-1):032601. PubMed ID: 31639899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping of single diffusing particles by a circular disk on a reflecting flat surface. Absorbing hemisphere approximation.
    Dagdug L; Berezhkovskii AM; Bezrukov SM
    Phys Chem Chem Phys; 2023 Jan; 25(3):2035-2042. PubMed ID: 36546317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biased diffusion in three-dimensional comb-like structures.
    Berezhkovskii AM; Dagdug L; Bezrukov SM
    J Chem Phys; 2015 Apr; 142(13):134101. PubMed ID: 25854222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary homogenization for a sphere with an absorbing cap of arbitrary size.
    Dagdug L; Vázquez MV; Berezhkovskii AM; Zitserman VY
    J Chem Phys; 2016 Dec; 145(21):214101. PubMed ID: 28799376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of Solute Diffusion Properties in Artificial Sebum.
    Yang S; Li L; Lu M; Chen T; Han L; Lian G
    J Pharm Sci; 2019 Sep; 108(9):3003-3010. PubMed ID: 31054887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of blood flow on near-the-wall mass transport of drugs and other bioactive agents: a simple formula to estimate boundary layer concentrations.
    Rugonyi S
    J Biomech Eng; 2008 Apr; 130(2):021010. PubMed ID: 18412497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping Intrachannel Diffusive Dynamics of Interacting Molecules onto a Two-Site Model: Crossover in Flux Concentration Dependence.
    Berezhkovskii AM; Bezrukov SM
    J Phys Chem B; 2018 Dec; 122(49):10996-11001. PubMed ID: 29957941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.