BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33601813)

  • 1. Silver nanoparticles enhance the larvicidal toxicity of Photorhabdus and Xenorhabdus bacterial toxins: an approach to control the filarial vector, Culex pipiens.
    El-Sadawy HA; El Namaky AH; Hafez EE; Baiome BA; Ahmed AM; Ashry HM; Ayaad TH
    Trop Biomed; 2018 Jun; 35(2):392-407. PubMed ID: 33601813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Larvicidal Activities of Indigenous
    Ahmed AM; Hussein HI; El-Kersh TA; Al-Sheikh YA; Ayaad TH; El-Sadawy HA; Al-Mekhlafi FA; Ibrahim MS; Al-Tamimi J; Nasr FA
    J Arthropod Borne Dis; 2017 Jun; 11(2):260-277. PubMed ID: 29062851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti.
    Fukruksa C; Yimthin T; Suwannaroj M; Muangpat P; Tandhavanant S; Thanwisai A; Vitta A
    Parasit Vectors; 2017 Sep; 10(1):440. PubMed ID: 28934970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular identification and genetic diversity among Photorhabdus and Xenorhabdus isolates.
    Moghaieb REA; Abdelhadi AA; El-Sadawy HA; Allam NAT; Baiome BA; Soliman MH
    3 Biotech; 2017 May; 7(1):6. PubMed ID: 28391470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larvicidal activity of Photorhabdus and Xenorhabdus bacteria isolated from insect parasitic nematodes against Aedes aegypti and Aedes albopictus.
    Subkrasae C; Ardpairin J; Dumidae A; Janthu P; Muangpat P; Polseela R; Tandhavanant S; Thanwisai A; Vitta A
    Acta Trop; 2022 Nov; 235():106668. PubMed ID: 36030882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on Xenorhabdus and Photorhabdus isolates from Northeastern Thailand: Identification, antibacterial activity, and association with entomopathogenic nematode hosts.
    Yimthin T; Fukruksa C; Muangpat P; Dumidae A; Wattanachaiyingcharoen W; Vitta A; Thanwisai A
    PLoS One; 2021; 16(8):e0255943. PubMed ID: 34383819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological control of Phlebotomus papatasi larvae by using entomopathogenic nematodes and its symbiotic bacterial toxins.
    El-Sadawy HA; Ramadan MY; Abdel Megeed KN; Ali HH; El Sattar SA; Elakabawy LM
    Trop Biomed; 2020 Jun; 37(2):288-302. PubMed ID: 33612799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entomopathogenic Nematodes and Their Symbiotic Bacteria from the National Parks of Thailand and Larvicidal Property of Symbiotic Bacteria against
    Thanwisai A; Muangpat P; Meesil W; Janthu P; Dumidae A; Subkrasae C; Ardpairin J; Tandhavanant S; Yoshino TP; Vitta A
    Biology (Basel); 2022 Nov; 11(11):. PubMed ID: 36421372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov.
    Fischer-Le Saux M; Viallard V; Brunel B; Normand P; Boemare NE
    Int J Syst Bacteriol; 1999 Oct; 49 Pt 4():1645-56. PubMed ID: 10555346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus.
    Yooyangket T; Muangpat P; Polseela R; Tandhavanant S; Thanwisai A; Vitta A
    PLoS One; 2018; 13(4):e0195681. PubMed ID: 29641570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand.
    Thanwisai A; Tandhavanant S; Saiprom N; Waterfield NR; Ke Long P; Bode HB; Peacock SJ; Chantratita N
    PLoS One; 2012; 7(9):e43835. PubMed ID: 22984446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae).
    Luiz Rosa da Silva J; Undurraga Schwalm F; Eugênio Silva C; da Costa M; Heermann R; Santos da Silva O
    J Econ Entomol; 2017 Apr; 110(2):378-385. PubMed ID: 28062794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).
    Muthukumaran U; Govindarajan M; Rajeswary M
    Parasitol Res; 2015 Mar; 114(3):989-99. PubMed ID: 25544703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification, characterization and toxicity assessment of PirAB toxins from Photorhabdus akhurstii subsp. akhurstii K-1.
    Prashar A; Kinkar OU; Hadapad AB; Makde RD; Hire RS
    J Invertebr Pathol; 2022 Oct; 194():107829. PubMed ID: 36167186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial activity of Xenorhabdus and Photorhabdus isolated from entomopathogenic nematodes against antibiotic-resistant bacteria.
    Muangpat P; Suwannaroj M; Yimthin T; Fukruksa C; Sitthisak S; Chantratita N; Vitta A; Thanwisai A
    PLoS One; 2020; 15(6):e0234129. PubMed ID: 32502188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).
    da Silva OS; Prado GR; da Silva JL; Silva CE; da Costa M; Heermann R
    Parasitol Res; 2013 Aug; 112(8):2891-6. PubMed ID: 23728731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: Effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms.
    Govindarajan M; Vijayan P; Kadaikunnan S; Alharbi NS; Benelli G
    J Photochem Photobiol B; 2016 Sep; 162():646-655. PubMed ID: 27491031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors.
    Kumar D; Kumar G; Agrawal V
    Parasitol Res; 2018 Feb; 117(2):377-389. PubMed ID: 29250727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Galtox, a new protein toxin from Photorhabdus bacterial symbionts of Heterorhabditis nematodes.
    Ahuja A; Kushwah J; Mathur C; Chauhan K; Dutta TK; Somvanshi VS
    Toxicon; 2021 Apr; 194():53-62. PubMed ID: 33610634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica.
    Ferreira T; van Reenen C; Pagès S; Tailliez P; Malan AP; Dicks LMT
    Int J Syst Evol Microbiol; 2013 May; 63(Pt 5):1853-1858. PubMed ID: 22984141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.