These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
481 related articles for article (PubMed ID: 33602082)
21. PINK1 protects against oxidative stress induced senescence of human nucleus pulposus cells via regulating mitophagy. Wang Y; Shen J; Chen Y; Liu H; Zhou H; Bai Z; Hu Z; Guo X Biochem Biophys Res Commun; 2018 Oct; 504(2):406-414. PubMed ID: 29890141 [TBL] [Abstract][Full Text] [Related]
22. The mitochondrial free radical theory of aging: a critical view. Sanz A; Stefanatos RK Curr Aging Sci; 2008 Mar; 1(1):10-21. PubMed ID: 20021368 [TBL] [Abstract][Full Text] [Related]
23. Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts. Fujita Y; Iketani M; Ito M; Ohsawa I Exp Gerontol; 2022 Aug; 165():111866. PubMed ID: 35680079 [TBL] [Abstract][Full Text] [Related]
24. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Butterfield DA; Koppal T; Howard B; Subramaniam R; Hall N; Hensley K; Yatin S; Allen K; Aksenov M; Aksenova M; Carney J Ann N Y Acad Sci; 1998 Nov; 854():448-62. PubMed ID: 9928452 [TBL] [Abstract][Full Text] [Related]
25. Mitochondrial alterations, cellular response to oxidative stress and defective degradation of proteins in aging. Lee HC; Wei YH Biogerontology; 2001; 2(4):231-44. PubMed ID: 11868898 [TBL] [Abstract][Full Text] [Related]
26. Mitochondria, telomeres and cell senescence. Passos JF; von Zglinicki T Exp Gerontol; 2005 Jun; 40(6):466-72. PubMed ID: 15963673 [TBL] [Abstract][Full Text] [Related]
27. Mitochondrial contribution to lipofuscin formation. König J; Ott C; Hugo M; Jung T; Bulteau AL; Grune T; Höhn A Redox Biol; 2017 Apr; 11():673-681. PubMed ID: 28160744 [TBL] [Abstract][Full Text] [Related]
28. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Wei YH; Lee HC Exp Biol Med (Maywood); 2002 Oct; 227(9):671-82. PubMed ID: 12324649 [TBL] [Abstract][Full Text] [Related]
29. Targeted Mitochondrial COQ Velichkovska M; Surnar B; Nair M; Dhar S; Toborek M Mol Pharm; 2019 Feb; 16(2):724-736. PubMed ID: 30592424 [TBL] [Abstract][Full Text] [Related]
30. Platycodin D Protects Human Fibroblast Cells from Premature Senescence Induced by H2O2 through Improving Mitochondrial Biogenesis. Shi C; Li Q; Zhang X Pharmacology; 2020; 105(9-10):598-608. PubMed ID: 32008007 [TBL] [Abstract][Full Text] [Related]
31. Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Wang L; Lu Z; Zhao J; Schank M; Cao D; Dang X; Nguyen LN; Nguyen LNT; Khanal S; Zhang J; Wu XY; El Gazzar M; Ning S; Moorman JP; Yao ZQ Aging Cell; 2021 Dec; 20(12):e13513. PubMed ID: 34752684 [TBL] [Abstract][Full Text] [Related]
32. Oxidative stress and mitochondrial DNA mutations in human aging. Wei YH Proc Soc Exp Biol Med; 1998 Jan; 217(1):53-63. PubMed ID: 9421207 [TBL] [Abstract][Full Text] [Related]
33. Mitochondrial theory of aging matures--roles of mtDNA mutation and oxidative stress in human aging. Wei YH; Ma YS; Lee HC; Lee CF; Lu CY Zhonghua Yi Xue Za Zhi (Taipei); 2001 May; 64(5):259-70. PubMed ID: 11499335 [TBL] [Abstract][Full Text] [Related]
34. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Jurk D; Wang C; Miwa S; Maddick M; Korolchuk V; Tsolou A; Gonos ES; Thrasivoulou C; Saffrey MJ; Cameron K; von Zglinicki T Aging Cell; 2012 Dec; 11(6):996-1004. PubMed ID: 22882466 [TBL] [Abstract][Full Text] [Related]
36. Measurements of Hydrogen Peroxide and Oxidative DNA Damage in a Cell Model of Premature Aging. Iglesias-Pedraz JM; Comai L Methods Mol Biol; 2020; 2144():245-257. PubMed ID: 32410041 [TBL] [Abstract][Full Text] [Related]
37. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies. Babizhayev MA; Yegorov YE J Biomed Mater Res A; 2015 Dec; 103(12):3993-4023. PubMed ID: 26034007 [TBL] [Abstract][Full Text] [Related]
38. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Babizhayev MA Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059 [TBL] [Abstract][Full Text] [Related]
39. MAPK15 protects from oxidative stress-dependent cellular senescence by inducing the mitophagic process. Franci L; Tubita A; Bertolino FM; Palma A; Cannino G; Settembre C; Rasola A; Rovida E; Chiariello M Aging Cell; 2022 Jul; 21(7):e13620. PubMed ID: 35642724 [TBL] [Abstract][Full Text] [Related]
40. Mitochondria, oxidative stress and aging. Sastre J; Pallardó FV; García de la Asunción J; Viña J Free Radic Res; 2000 Mar; 32(3):189-98. PubMed ID: 10730818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]