These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33602302)

  • 1. A hierarchical machine learning framework for the analysis of large scale animal movement data.
    Torney CJ; Morales JM; Husmeier D
    Mov Ecol; 2021 Feb; 9(1):6. PubMed ID: 33602302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treed Gaussian processes for animal movement modeling.
    Rieber CJ; Hefley TJ; Haukos DA
    Ecol Evol; 2024 Jun; 14(6):e11447. PubMed ID: 38832142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling spectral analysis and hidden Markov models for the segmentation of behavioural patterns.
    Heerah K; Woillez M; Fablet R; Garren F; Martin S; De Pontual H
    Mov Ecol; 2017; 5():20. PubMed ID: 28944062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint estimation over multiple individuals improves behavioural state inference from animal movement data.
    Jonsen I
    Sci Rep; 2016 Feb; 6():20625. PubMed ID: 26853261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring spatially varying animal movement characteristics using a hierarchical continuous-time velocity model.
    Paun I; Husmeier D; Hopcraft JGC; Masolele MM; Torney CJ
    Ecol Lett; 2022 Dec; 25(12):2726-2738. PubMed ID: 36256526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Running on empty: recharge dynamics from animal movement data.
    Hooten MB; Scharf HR; Morales JM
    Ecol Lett; 2019 Feb; 22(2):377-389. PubMed ID: 30548152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inversion of hierarchical Bayesian models using Gaussian processes.
    Lomakina EI; Paliwal S; Diaconescu AO; Brodersen KH; Aponte EA; Buhmann JM; Stephan KE
    Neuroimage; 2015 Sep; 118():133-45. PubMed ID: 26048619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian Process Panel Modeling-Machine Learning Inspired Analysis of Longitudinal Panel Data.
    Karch JD; Brandmaier AM; Voelkle MC
    Front Psychol; 2020; 11():351. PubMed ID: 32265770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equivalence between Step Selection Functions and Biased Correlated Random Walks for Statistical Inference on Animal Movement.
    Duchesne T; Fortin D; Rivest LP
    PLoS One; 2015; 10(4):e0122947. PubMed ID: 25898019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.
    Zhang C; Shahbaba B; Zhao H
    Stat Comput; 2017 Nov; 27(6):1473-1490. PubMed ID: 28983154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robustness of movement models: can models bridge the gap between temporal scales of data sets and behavioural processes?
    Schlägel UE; Lewis MA
    J Math Biol; 2016 Dec; 73(6-7):1691-1726. PubMed ID: 27098937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hierarchical model for integrating unsupervised generative embedding and empirical Bayes.
    Raman S; Deserno L; Schlagenhauf F; Stephan KE
    J Neurosci Methods; 2016 Aug; 269():6-20. PubMed ID: 27141854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for location uncertainty in azimuthal telemetry data improves ecological inference.
    Gerber BD; Hooten MB; Peck CP; Rice MB; Gammonley JH; Apa AD; Davis AJ
    Mov Ecol; 2018; 6():14. PubMed ID: 30062012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streaming Variational Monte Carlo.
    Zhao Y; Nassar J; Jordan I; Bugallo M; Park IM
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):1150-1161. PubMed ID: 35201981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring spatial memory and spatiotemporal scaling from GPS data: comparing red deer Cervus elaphus movements with simulation models.
    Gautestad AO; Loe LE; Mysterud A
    J Anim Ecol; 2013 May; 82(3):572-86. PubMed ID: 23351042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring an animal's environment through biologging: quantifying the environmental influence on animal movement.
    Eikelboom JAJ; de Knegt HJ; Klaver M; van Langevelde F; van der Wal T; Prins HHT
    Mov Ecol; 2020; 8():40. PubMed ID: 33088572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of spatio-temporal model to estimate burden of diseases, injuries and risk factors in Iran 1990 - 2013.
    Parsaeian M; Farzadfar F; Zeraati H; Mahmoudi M; Rahimighazikalayeh G; Navidi I; Niakan Kalhori SR; Mohammad K; Jafari Khaledi M
    Arch Iran Med; 2014 Jan; 17(1):28-33. PubMed ID: 24444062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses.
    Signer J; Fieberg J; Avgar T
    Ecol Evol; 2019 Jan; 9(2):880-890. PubMed ID: 30766677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying stationary phases in multivariate time series for highlighting behavioural modes and home range settlements.
    Patin R; Etienne MP; Lebarbier E; Chamaillé-Jammes S; Benhamou S
    J Anim Ecol; 2020 Jan; 89(1):44-56. PubMed ID: 31539165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.