These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33602306)

  • 1. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks.
    Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z
    Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks.
    Wang X; Zhang C; Zhang Y; Meng X; Zhang Z; Shi X; Song T
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FIRM: Flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets.
    Ming J; Lin Z; Zhao J; Wan X; ; Yang C; Wu AR
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35561293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces.
    Ding J; Regev A
    Nat Commun; 2021 May; 12(1):2554. PubMed ID: 33953202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks.
    Wang Y; Liu T; Zhao H
    Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning framework for denoising and ordering scRNA-seq data using adversarial autoencoder with dynamic batching.
    Ko KD; Sartorelli V
    STAR Protoc; 2024 Jun; 5(2):103067. PubMed ID: 38748883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes.
    Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K
    Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis.
    Flores M; Liu Z; Zhang T; Hasib MM; Chiu YC; Ye Z; Paniagua K; Jo S; Zhang J; Gao SJ; Jin YF; Chen Y; Huang Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supervised Adversarial Alignment of Single-Cell RNA-seq Data.
    Ge S; Wang H; Alavi A; Xing E; Bar-Joseph Z
    J Comput Biol; 2021 May; 28(5):501-513. PubMed ID: 33470876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data.
    Ma Y; Pei Y
    J Bioinform Comput Biol; 2024 Jun; 22(3):2450015. PubMed ID: 39036845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Comparative Analyses of 10X Genomics Chromium and Smart-seq2.
    Wang X; He Y; Zhang Q; Ren X; Zhang Z
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):253-266. PubMed ID: 33662621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration.
    Wang W; Tan H; Sun M; Han Y; Chen W; Qiu S; Zheng K; Wei G; Ni T
    Nucleic Acids Res; 2021 May; 49(9):e54. PubMed ID: 33619563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scIGANs: single-cell RNA-seq imputation using generative adversarial networks.
    Xu Y; Zhang Z; You L; Liu J; Fan Z; Zhou X
    Nucleic Acids Res; 2020 Sep; 48(15):e85. PubMed ID: 32588900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.
    Lin E; Mukherjee S; Kannan S
    BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.
    Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq data.
    Lütge A; Zyprych-Walczak J; Brykczynska Kunzmann U; Crowell HL; Calini D; Malhotra D; Soneson C; Robinson MD
    Life Sci Alliance; 2021 Jun; 4(6):. PubMed ID: 33758076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCIntRuler: guiding the integration of multiple single-cell RNA-seq datasets with a novel statistical metric.
    Lyu Y; Lin SH; Wu H; Li Z
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39226185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders.
    Wang X; Zhang C; Wang L; Zheng P
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scMC learns biological variation through the alignment of multiple single-cell genomics datasets.
    Zhang L; Nie Q
    Genome Biol; 2021 Jan; 22(1):10. PubMed ID: 33397454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.