These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33602306)

  • 21. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data.
    Lin P; Troup M; Ho JW
    Genome Biol; 2017 Mar; 18(1):59. PubMed ID: 28351406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning of gene relationships from single cell time-course expression data.
    Yuan Y; Bar-Joseph Z
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. iSMNN: batch effect correction for single-cell RNA-seq data via iterative supervised mutual nearest neighbor refinement.
    Yang Y; Li G; Xie Y; Wang L; Lagler TM; Yang Y; Liu J; Qian L; Li Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors.
    Slyper M; Porter CBM; Ashenberg O; Waldman J; Drokhlyansky E; Wakiro I; Smillie C; Smith-Rosario G; Wu J; Dionne D; Vigneau S; Jané-Valbuena J; Tickle TL; Napolitano S; Su MJ; Patel AG; Karlstrom A; Gritsch S; Nomura M; Waghray A; Gohil SH; Tsankov AM; Jerby-Arnon L; Cohen O; Klughammer J; Rosen Y; Gould J; Nguyen L; Hofree M; Tramontozzi PJ; Li B; Wu CJ; Izar B; Haq R; Hodi FS; Yoon CH; Hata AN; Baker SJ; Suvà ML; Bueno R; Stover EH; Clay MR; Dyer MA; Collins NB; Matulonis UA; Wagle N; Johnson BE; Rotem A; Rozenblatt-Rosen O; Regev A
    Nat Med; 2020 May; 26(5):792-802. PubMed ID: 32405060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scGMAAE: Gaussian mixture adversarial autoencoders for diversification analysis of scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GAN Learning Methods for Bulk RNA-Seq Data and Their Interpretive Application in the Context of Disease Progression.
    Kim Y; Cheon M
    Methods Mol Biol; 2024; 2812():259-274. PubMed ID: 39068368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
    Zhou B; Jin W
    Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep embedded clustering with multiple objectives on scRNA-seq data.
    Li X; Zhang S; Wong KC
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Cell Cycle-Aware Network for Data Integration and Label Transferring of Single-Cell RNA-Seq and ATAC-Seq.
    Liu J; Ma J; Wen J; Zhou X
    Adv Sci (Weinh); 2024 Aug; 11(31):e2401815. PubMed ID: 38887194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks.
    Zinati Y; Takiddeen A; Emad A
    Nat Commun; 2024 May; 15(1):4055. PubMed ID: 38744843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating multiple references for single-cell assignment.
    Duan B; Chen S; Chen X; Zhu C; Tang C; Wang S; Gao Y; Fu S; Liu Q
    Nucleic Acids Res; 2021 Aug; 49(14):e80. PubMed ID: 34037791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses.
    Wang J; Ma A; Chang Y; Gong J; Jiang Y; Qi R; Wang C; Fu H; Ma Q; Xu D
    Nat Commun; 2021 Mar; 12(1):1882. PubMed ID: 33767197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ascend: R package for analysis of single-cell RNA-seq data.
    Senabouth A; Lukowski SW; Hernandez JA; Andersen SB; Mei X; Nguyen QH; Powell JE
    Gigascience; 2019 Aug; 8(8):. PubMed ID: 31505654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An active learning approach for clustering single-cell RNA-seq data.
    Lin X; Liu H; Wei Z; Roy SB; Gao N
    Lab Invest; 2022 Mar; 102(3):227-235. PubMed ID: 34244616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scedar: A scalable Python package for single-cell RNA-seq exploratory data analysis.
    Zhang Y; Kim MS; Reichenberger ER; Stear B; Taylor DM
    PLoS Comput Biol; 2020 Apr; 16(4):e1007794. PubMed ID: 32339163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-cell RNA-seq clustering: datasets, models, and algorithms.
    Peng L; Tian X; Tian G; Xu J; Huang X; Weng Y; Yang J; Zhou L
    RNA Biol; 2020 Jun; 17(6):765-783. PubMed ID: 32116127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data.
    Wang CX; Zhang L; Wang B
    Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Network embedding-based representation learning for single cell RNA-seq data.
    Li X; Chen W; Chen Y; Zhang X; Gu J; Zhang MQ
    Nucleic Acids Res; 2017 Nov; 45(19):e166. PubMed ID: 28977434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.