BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33602308)

  • 1. In situ measurements of oxidation-reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose.
    Kadić A; Várnai A; Eijsink VGH; Horn SJ; Lidén G
    Biotechnol Biofuels; 2021 Feb; 14(1):46. PubMed ID: 33602308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities.
    Angeltveit CF; Várnai A; Eijsink VGH; Horn SJ
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):39. PubMed ID: 38461298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.
    Müller G; Chylenski P; Bissaro B; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2018; 11():209. PubMed ID: 30061931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification.
    Ni H; Li M; Li F; Wang L; Xie S; Zhang X; Yu H
    Int J Biol Macromol; 2020 Oct; 161():308-314. PubMed ID: 32526300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions.
    Müller G; Várnai A; Johansen KS; Eijsink VG; Horn SJ
    Biotechnol Biofuels; 2015; 8():187. PubMed ID: 26609322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H
    Hansen LD; Eijsink VGH; Horn SJ; Várnai A
    Biotechnol Bioeng; 2023 Mar; 120(3):726-736. PubMed ID: 36471631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs.
    Chylenski P; Petrović DM; Müller G; Dahlström M; Bengtsson O; Lersch M; Siika-Aho M; Horn SJ; Eijsink VGH
    Biotechnol Biofuels; 2017; 10():177. PubMed ID: 28702082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H
    Kont R; Pihlajaniemi V; Borisova AS; Aro N; Marjamaa K; Loogen J; Büchs J; Eijsink VGH; Kruus K; Väljamäe P
    Biotechnol Biofuels; 2019; 12():235. PubMed ID: 31624497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced in situ H
    Stepnov AA; Eijsink VGH; Forsberg Z
    Sci Rep; 2022 Apr; 12(1):6129. PubMed ID: 35414104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery.
    Long L; Hu Y; Sun F; Gao W; Hao Z; Yin H
    Int J Biol Macromol; 2022 Oct; 219():68-83. PubMed ID: 35931294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic insights into the role of the reductant in H
    Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P
    J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous expression and characterization of novel GH12 β-glucanase and AA10 lytic polysaccharide monooxygenase from Streptomyces megaspores and their synergistic action in cellulose saccharification.
    Qin X; Yang K; Zou J; Wang X; Tu T; Wang Y; Su X; Yao B; Huang H; Luo H
    Biotechnol Biofuels Bioprod; 2023 May; 16(1):89. PubMed ID: 37221623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs).
    Eijsink VGH; Petrovic D; Forsberg Z; Mekasha S; Røhr ÅK; Várnai A; Bissaro B; Vaaje-Kolstad G
    Biotechnol Biofuels; 2019; 12():58. PubMed ID: 30923566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LPMO-supported saccharification of biomass: effects of continuous aeration of reaction mixtures with variable fractions of water-insoluble solids and cellulolytic enzymes.
    Tang C; Gandla ML; Jönsson LJ
    Biotechnol Biofuels Bioprod; 2023 Oct; 16(1):156. PubMed ID: 37865768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the H
    Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H
    J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the roles of the reductant and free copper ions in LPMO kinetics.
    Stepnov AA; Forsberg Z; Sørlie M; Nguyen GS; Wentzel A; Røhr ÅK; Eijsink VGH
    Biotechnol Biofuels; 2021 Jan; 14(1):28. PubMed ID: 33478537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce.
    Caputo F; Tõlgo M; Naidjonoka P; Krogh KBRM; Novy V; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):68. PubMed ID: 37076886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials.
    Costa THF; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2019; 12():270. PubMed ID: 31788026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.