BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33602494)

  • 21. Global patterns of enhancer activity during sea urchin embryogenesis assessed by eRNA profiling.
    Khor JM; Guerrero-Santoro J; Douglas W; Ettensohn CA
    Genome Res; 2021 Sep; 31(9):1680-1692. PubMed ID: 34330790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the effects of the modularity of gene regulatory networks on phenotypic variability and its association with robustness.
    Hernández U; Posadas-Vidales L; Espinosa-Soto C
    Biosystems; 2022 Feb; 212():104586. PubMed ID: 34971735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Building developmental gene regulatory networks.
    Li E; Davidson EH
    Birth Defects Res C Embryo Today; 2009 Jun; 87(2):123-30. PubMed ID: 19530131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability.
    Ten Tusscher KH; Hogeweg P
    PLoS Comput Biol; 2011 Oct; 7(10):e1002208. PubMed ID: 21998573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary analysis of the cis-regulatory region of the spicule matrix gene SM50 in strongylocentrotid sea urchins.
    Walters J; Binkley E; Haygood R; Romano LA
    Dev Biol; 2008 Mar; 315(2):567-78. PubMed ID: 18262514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution.
    Ettensohn CA; Guerrero-Santoro J; Khor JM
    Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the role of sparseness in the evolution of modularity in gene regulatory networks.
    Espinosa-Soto C
    PLoS Comput Biol; 2018 May; 14(5):e1006172. PubMed ID: 29775459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Actors with Multiple Roles: Pleiotropic Enhancers and the Paradigm of Enhancer Modularity.
    Sabarís G; Laiker I; Preger-Ben Noon E; Frankel N
    Trends Genet; 2019 Jun; 35(6):423-433. PubMed ID: 31005339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The gene regulatory control of sea urchin gastrulation.
    Ettensohn CA
    Mech Dev; 2020 Jun; 162():103599. PubMed ID: 32119908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Common Themes and Future Challenges in Understanding Gene Regulatory Network Evolution.
    Schember I; Halfon MS
    Cells; 2022 Feb; 11(3):. PubMed ID: 35159319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF; Nguyen AT; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolutionary plasticity of developmental gene regulatory network architecture.
    Hinman VF; Davidson EH
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19404-9. PubMed ID: 18042699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene regulatory networks for ectoderm specification in sea urchin embryos.
    Su YH
    Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.
    Ben-Tabou de-Leon S; Davidson EH
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(2):237-246. PubMed ID: 20228891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses.
    Erkenbrack EM; Davidson EH
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4075-84. PubMed ID: 26170318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation, annotation, evolutionary analysis, and database integration of 20,000 unique sea urchin EST clusters.
    Poustka AJ; Groth D; Hennig S; Thamm S; Cameron A; Beck A; Reinhardt R; Herwig R; Panopoulou G; Lehrach H
    Genome Res; 2003 Dec; 13(12):2736-46. PubMed ID: 14656975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of regulatory networks and diversity of gene expression patterns.
    Mochizuki A
    J Theor Biol; 2008 Jan; 250(2):307-21. PubMed ID: 17988691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics.
    Hettich J; Gebhardt JCM
    BMC Bioinformatics; 2022 Jan; 23(1):13. PubMed ID: 34986805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.