These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 33602633)

  • 1. 3D culture models to study SARS-CoV-2 infectivity and antiviral candidates: From spheroids to bioprinting.
    de Melo BAG; Benincasa JC; Cruz EM; Maricato JT; Porcionatto MA
    Biomed J; 2021 Mar; 44(1):31-42. PubMed ID: 33602633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spheroids and organoids as humanized 3D scaffold-free engineered tissues for SARS-CoV-2 viral infection and drug screening.
    Kronemberger GS; Carneiro FA; Rezende DF; Baptista LS
    Artif Organs; 2021 Jun; 45(6):548-558. PubMed ID: 33264436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioengineered
    Chakraborty J; Banerjee I; Vaishya R; Ghosh S
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6540-6555. PubMed ID: 33320635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of studies of severe acute respiratory syndrome related coronavirus-2 pathogenesis in human organoid models.
    Egilmezer E; Rawlinson WD
    Rev Med Virol; 2021 Nov; 31(6):e2227. PubMed ID: 33763936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for 3D bioprinting of spheroids: A comprehensive review.
    Banerjee D; Singh YP; Datta P; Ozbolat V; O'Donnell A; Yeo M; Ozbolat IT
    Biomaterials; 2022 Dec; 291():121881. PubMed ID: 36335718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Cell Culture Models to Study Respiratory Virus Infections Including COVID-19.
    Harb A; Fakhreddine M; Zaraket H; Saleh FA
    Biomimetics (Basel); 2021 Dec; 7(1):. PubMed ID: 35076456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Adverse Outcomes Approach to Study the Effects of SARS-CoV-2 in 3D Organoid Models.
    Basu A; Pamreddy A; Singh P; Sharma K
    J Mol Biol; 2022 Feb; 434(3):167213. PubMed ID: 34437890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Anti-Coronavirus Agents and the Pharmacologic Mechanisms.
    Yang Y; Cui X; Wei H; Guo C; Zhang Y
    Drug Des Devel Ther; 2021; 15():1213-1223. PubMed ID: 33762818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinting Strategies for Secretory Epithelial Organoids.
    Urkasemsin G; Rungarunlert S; Ferreira JN
    Methods Mol Biol; 2020; 2140():243-249. PubMed ID: 32207117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Bioprinting for fabrication of tissue models of COVID-19 infection.
    Kabir A; Datta P; Oh J; Williams A; Ozbolat V; Unutmaz D; T Ozbolat I
    Essays Biochem; 2021 Aug; 65(3):503-518. PubMed ID: 34028514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale, Automated Production of Adipose-Derived Stem Cell Spheroids for 3D Bioprinting.
    Kronemberger GS; Miranda GASC; Silva TIG; Gonçalves RM; Granjeiro JM; Baptista LS
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Angiotensin-Converting Enzyme 2/Transmembrane Protease Serine 2-Double-Positive Human Induced Pluripotent Stem Cell-Derived Spheroids for Anti-Severe Acute Respiratory Syndrome Coronavirus 2 Drug Evaluation.
    Higashi-Kuwata N; Yabe SG; Fukuda S; Nishida J; Tamura-Nakano M; Hattori SI; Okochi H; Mitsuya H
    Microbiol Spectr; 2022 Dec; 10(6):e0349022. PubMed ID: 36314907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development.
    Karnik M; Beeraka NM; Uthaiah CA; Nataraj SM; Bettadapura ADS; Aliev G; Madhunapantula SV
    Mol Neurobiol; 2021 Sep; 58(9):4535-4563. PubMed ID: 34089508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinted liver tissue and disease models: Current advances and future perspectives.
    Sun L; Wang Y; Zhang S; Yang H; Mao Y
    Biomater Adv; 2023 Sep; 152():213499. PubMed ID: 37295133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
    Ong CS; Pitaktong I; Hibino N
    Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2-ACE2 Receptor Interactions.
    Day CJ; Bailly B; Guillon P; Dirr L; Jen FE; Spillings BL; Mak J; von Itzstein M; Haselhorst T; Jennings MP
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).
    Bourgonje AR; Abdulle AE; Timens W; Hillebrands JL; Navis GJ; Gordijn SJ; Bolling MC; Dijkstra G; Voors AA; Osterhaus AD; van der Voort PH; Mulder DJ; van Goor H
    J Pathol; 2020 Jul; 251(3):228-248. PubMed ID: 32418199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D neural tissue models: From spheroids to bioprinting.
    Zhuang P; Sun AX; An J; Chua CK; Chew SY
    Biomaterials; 2018 Feb; 154():113-133. PubMed ID: 29120815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. V367F Mutation in SARS-CoV-2 Spike RBD Emerging during the Early Transmission Phase Enhances Viral Infectivity through Increased Human ACE2 Receptor Binding Affinity.
    Ou J; Zhou Z; Dai R; Zhang J; Zhao S; Wu X; Lan W; Ren Y; Cui L; Lan Q; Lu L; Seto D; Chodosh J; Wu J; Zhang G; Zhang Q
    J Virol; 2021 Jul; 95(16):e0061721. PubMed ID: 34105996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.