These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33603222)

  • 1. Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride.
    Ji P; Park J; Gu Y; Clark DS; Hartwig JF
    Nat Chem; 2021 Apr; 13(4):312-318. PubMed ID: 33603222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric iron-catalyzed hydrosilane reduction of ketones: effect of zinc metal upon the absolute configuration.
    Inagaki T; Ito A; Ito J; Nishiyama H
    Angew Chem Int Ed Engl; 2010 Dec; 49(49):9384-7. PubMed ID: 21053232
    [No Abstract]   [Full Text] [Related]  

  • 3. Brønsted acid catalyzed asymmetric reduction of ketones and acyl silanes using chiral anti-pentane-2,4-diol.
    Matsuo J; Hattori Y; Ishibashi H
    Org Lett; 2010 May; 12(10):2294-7. PubMed ID: 20408594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lewis base-catalyzed conjugate reduction and reductive aldol reaction of alpha,beta-unsaturated ketones using trichlorosilane.
    Sugiura M; Sato N; Kotani S; Nakajima M
    Chem Commun (Camb); 2008 Sep; (36):4309-11. PubMed ID: 18802553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-histidine-glutamate as a regulator of enzymatic cycles: a case study of carbonic anhydrase.
    Frison G; Ohanessian G
    Phys Chem Chem Phys; 2009 Jan; 11(2):374-83. PubMed ID: 19088994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent development and improvement for boron hydride-based catalytic asymmetric reduction of unsymmetrical ketones.
    Cho BT
    Chem Soc Rev; 2009 Feb; 38(2):443-52. PubMed ID: 19169459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of an unprecedented mechanism for the catalytic hydrosilylation of carbonyl compounds.
    Nolin KA; Krumper JR; Pluth MD; Bergman RG; Toste FD
    J Am Chem Soc; 2007 Nov; 129(47):14684-96. PubMed ID: 17983224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonic Anhydrase Variants Catalyze the Reduction of Dialkyl Ketones with High Enantioselectivity.
    Chen R; Kayrouz CS; McAmis E; Clark DS; Hartwig JF
    Angew Chem Int Ed Engl; 2024 Jul; ():e202407111. PubMed ID: 38955771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc catalysts for on-demand hydrogen generation and carbon dioxide functionalization.
    Sattler W; Parkin G
    J Am Chem Soc; 2012 Oct; 134(42):17462-5. PubMed ID: 23046174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonic anhydrase II-based metal ion sensing: Advances and new perspectives.
    Hurst TK; Wang D; Thompson RB; Fierke CA
    Biochim Biophys Acta; 2010 Feb; 1804(2):393-403. PubMed ID: 19818877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scope of the organocatalysed asymmetric reductive amination of ketones with trichlorosilane.
    Gautier FM; Jones S; Li X; Martin SJ
    Org Biomol Chem; 2011 Oct; 9(22):7860-8. PubMed ID: 21960353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The discovery of novel reactivity in the development of C-C bond-forming reactions: in situ generation of zinc acetylides with Zn(II)/R(3)N.
    Frantz DE; Fassler R; Tomooka CS; Carreira EM
    Acc Chem Res; 2000 Jun; 33(6):373-81. PubMed ID: 10891055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced axial chirality in biocatalytic asymmetric ketone reduction.
    Agudo R; Roiban GD; Reetz MT
    J Am Chem Soc; 2013 Feb; 135(5):1665-8. PubMed ID: 23075382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols.
    Ni Y; Xu JH
    Biotechnol Adv; 2012; 30(6):1279-88. PubMed ID: 22079798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure and kinetic studies of a tetrameric type II β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.
    Ferraroni M; Del Prete S; Vullo D; Capasso C; Supuran CT
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2449-56. PubMed ID: 26627652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building reactive copper centers in human carbonic anhydrase II.
    Song H; Weitz AC; Hendrich MP; Lewis EA; Emerson JP
    J Biol Inorg Chem; 2013 Aug; 18(6):595-8. PubMed ID: 23744511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effects of nitrite on the reactions of bovine carbonic anhydrase II with CO2 and bicarbonate consistent with zinc-bound nitrite.
    Nielsen PM; Fago A
    J Inorg Biochem; 2015 Aug; 149():6-11. PubMed ID: 25951615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insight into copper-catalysed allylic substitutions with bis(triorganosilyl) zincs. Enantiospecific preparation of alpha-chiral silanes.
    Schmidtmann ES; Oestreich M
    Chem Commun (Camb); 2006 Sep; (34):3643-5. PubMed ID: 17047792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereo- and regioselective azide/alkyne cycloadditions in carbonic anhydrase II via tethering, monitored by crystallography and mass spectrometry.
    Wischeler JS; Sun D; Sandner NU; Linne U; Heine A; Koert U; Klebe G
    Chemistry; 2011 May; 17(21):5842-51. PubMed ID: 21506176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous-phase asymmetric transfer hydrogenation of ketones--a greener approach to chiral alcohols.
    Wu X; Xiao J
    Chem Commun (Camb); 2007 Jun; (24):2449-66. PubMed ID: 17563797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.