These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33603239)

  • 1. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles.
    Shan X; Wang F; Wang D; Wen S; Chen C; Di X; Nie P; Liao J; Liu Y; Ding L; Reece PJ; Jin D
    Nat Nanotechnol; 2021 May; 16(5):531-537. PubMed ID: 33603239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations.
    Ortiz-Rivero E; Labrador-Páez L; Rodríguez-Sevilla P; Haro-González P
    Front Chem; 2020; 8():593398. PubMed ID: 33240853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing nanoparticles using a double nanohole optical trap.
    Kotnala A; DePaoli D; Gordon R
    Lab Chip; 2013 Oct; 13(20):4142-6. PubMed ID: 23969596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypothermal opto-thermophoretic tweezers.
    Kollipara PS; Li X; Li J; Chen Z; Ding H; Huang S; Qin Z; Zheng Y
    Res Sq; 2023 Jan; ():. PubMed ID: 36711861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothermal opto-thermophoretic tweezers.
    Kollipara PS; Li X; Li J; Chen Z; Ding H; Kim Y; Huang S; Qin Z; Zheng Y
    Nat Commun; 2023 Aug; 14(1):5133. PubMed ID: 37612299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers.
    van der Horst A; van Oostrum PD; Moroz A; van Blaaderen A; Dogterom M
    Appl Opt; 2008 Jun; 47(17):3196-202. PubMed ID: 18545293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting the Optical Trapping of a Single Virus by Quantum Dots Tagging Increases Virus Polarizability and Trap Stiffness.
    Xu D; Li J; Liu L; Tang H
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):55174-55182. PubMed ID: 37966372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced optical trapping of ZrO
    Peng M; Luo H; Xiong W; Kuang T; Chen X; Han X; Xiao G; Tan Z
    Opt Express; 2022 Dec; 30(26):46060-46069. PubMed ID: 36558569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping and manipulation of bubbles with holographic optical tweezers.
    Molina-Jiménez JM; Morales-Cruzado B; Briceño-Ahumada Z; Carrasco-Fadanelli V; Sarmiento-Gómez E
    Soft Matter; 2024 Feb; 20(9):2032-2039. PubMed ID: 38334987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
    Zhao X; Zhao N; Shi Y; Xin H; Li B
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.