BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33603362)

  • 21. Paclitaxel/methotrexate co-loaded PLGA nanoparticles in glioblastoma treatment: Formulation development and in vitro antitumor activity evaluation.
    Madani F; Esnaashari SS; Bergonzi MC; Webster TJ; Younes HM; Khosravani M; Adabi M
    Life Sci; 2020 Sep; 256():117943. PubMed ID: 32531377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The comparative study of influence of lactic and glycolic acids copolymers type on properties of daunorubicin loaded nanoparticles and drug release.
    Nikolskaya E; Sokol M; Faustova M; Zhunina O; Mollaev M; Yabbarov N; Tereshchenko O; Popov R; Severin E
    Acta Bioeng Biomech; 2018; 20(1):65-77. PubMed ID: 29658530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic induction of apoptosis in lung cancer cells through co-delivery of PLGA phytol/α-bisabolol nanoparticles.
    Kiruthiga C; Balan DJ; Prasath NH; Manikandakrishnan M; Jafni S; Prabhu NM; Pandian SK; Devi KP
    Naunyn Schmiedebergs Arch Pharmacol; 2024 Jul; 397(7):5131-5144. PubMed ID: 38240783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shifting the absorption to the near-infrared region and inducing a strong photothermal effect by encapsulating zinc(II) phthalocyanine in poly(lactic-co-glycolic acid)-hyaluronic acid nanoparticles.
    Gao D; Wong RCH; Wang Y; Guo X; Yang Z; Lo PC
    Acta Biomater; 2020 Oct; 116():329-343. PubMed ID: 32890751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles.
    Elsewedy HS; Dhubiab BEA; Mahdy MA; Elnahas HM
    Drug Deliv; 2020 Dec; 27(1):1134-1146. PubMed ID: 32729331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity.
    Yan F; Zhang C; Zheng Y; Mei L; Tang L; Song C; Sun H; Huang L
    Nanomedicine; 2010 Feb; 6(1):170-8. PubMed ID: 19447200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer.
    Wang Q; Alshaker H; Böhler T; Srivats S; Chao Y; Cooper C; Pchejetski D
    Sci Rep; 2017 Jul; 7(1):5901. PubMed ID: 28724986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation.
    Devrim B; Kara A; Vural İ; Bozkır A
    Drug Dev Ind Pharm; 2016 Nov; 42(11):1865-76. PubMed ID: 27091346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CD44-Targeting Oxygen Self-Sufficient Nanoparticles for Enhanced Photodynamic Therapy Against Malignant Melanoma.
    Hou X; Tao Y; Li X; Pang Y; Yang C; Jiang G; Liu Y
    Int J Nanomedicine; 2020; 15():10401-10416. PubMed ID: 33376328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan-Coated Poly(lactic-co-glycolic acid)-Diiodinated boron-Dipyrromethene Nanoparticles Improve Tumor Selectivity and Stealth Properties in Photodynamic Cancer Therapy.
    Voon SH; Tiew SX; Kue CS; Lee HB; Kiew LV; Misran M; Kamkaew A; Burgess K; Chung LY
    J Biomed Nanotechnol; 2016 Jul; 12(7):1431-52. PubMed ID: 29336539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers.
    Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X
    Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A rationally designed photo-chemo core-shell nanomedicine for inhibiting the migration of metastatic breast cancer cells followed by photodynamic killing.
    Malarvizhi GL; Chandran P; Retnakumari AP; Ramachandran R; Gupta N; Nair S; Koyakutty M
    Nanomedicine; 2014 Apr; 10(3):579-87. PubMed ID: 24200524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles.
    Shi L; Wang X; Zhao F; Luan H; Tu Q; Huang Z; Wang H; Wang H
    Int J Nanomedicine; 2013; 8():2669-76. PubMed ID: 23926429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoparticle albumin-bound mTHPC for photodynamic therapy: Preparation and comprehensive characterization of a promising drug delivery system.
    Stein NC; Mulac D; Fabian J; Herrmann FC; Langer K
    Int J Pharm; 2020 May; 582():119347. PubMed ID: 32315751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of targeted curcumin (CUR) loaded PLGA nanoparticles for in vitro photodynamic therapy on human glioblastoma cell line.
    Jamali Z; Khoobi M; Hejazi SM; Eivazi N; Abdolahpour S; Imanparast F; Moradi-Sardareh H; Paknejad M
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():190-201. PubMed ID: 29969678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic core-shell nanoparticles for drug delivery by nebulization.
    Verma NK; Crosbie-Staunton K; Satti A; Gallagher S; Ryan KB; Doody T; McAtamney C; MacLoughlin R; Galvin P; Burke CS; Volkov Y; Gun'ko YK
    J Nanobiotechnology; 2013 Jan; 11():1. PubMed ID: 23343139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface-modified PLGA nanoparticles with PEG/LA-chitosan for targeted delivery of arsenic trioxide for liver cancer treatment: Inhibition effects enhanced and side effects reduced.
    Song X; Wang J; Xu Y; Shao H; Gu J
    Colloids Surf B Biointerfaces; 2019 Aug; 180():110-117. PubMed ID: 31030022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zinc phthalocyanine tetrasulfonate-loaded polyelectrolytic PLGA nanoparticles for photodynamic therapy applications.
    de Toledo MCMC; Abreu ADS; Carvalho JA; Ambrósio JAR; Godoy DDS; Dos Santos Pinto BC; Beltrame Junior M; Simioni AR
    Photodiagnosis Photodyn Ther; 2020 Dec; 32():101966. PubMed ID: 32835878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(lactic-
    Kumar P; Singh AK; Raj V; Rai A; Keshari AK; Kumar D; Maity B; Prakash A; Maiti S; Saha S
    Int J Nanomedicine; 2018; 13():975-990. PubMed ID: 29497292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and in vitro evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer.
    Mandal B; Mittal NK; Balabathula P; Thoma LA; Wood GC
    Eur J Pharm Sci; 2016 Jan; 81():162-71. PubMed ID: 26517962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.