These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Nitrogenases from Klebsiella pneumoniae and Clostridium pasteurianum. Kinetic investigations of cross-reactions as a probe of the enzyme mechanism. Smith BE; Thorneley RN; Eady RR; Mortenson LE Biochem J; 1976 Aug; 157(2):439-47. PubMed ID: 134700 [TBL] [Abstract][Full Text] [Related]
23. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Lanzilotta WN; Seefeldt LC Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014 [TBL] [Abstract][Full Text] [Related]
24. Nucleotide-iron-sulfur cluster signal transduction in the nitrogenase iron-protein: the role of Asp125. Wolle D; Dean DR; Howard JB Science; 1992 Nov; 258(5084):992-5. PubMed ID: 1359643 [TBL] [Abstract][Full Text] [Related]
25. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Lanzilotta WN; Parker VD; Seefeldt LC Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061 [TBL] [Abstract][Full Text] [Related]
26. Nitrogenase IX. Effect of the MgATP generator on the catalytic and EPR properties of the enzyme in vitro. Davis LC; Orhme-Johnson WH Biochim Biophys Acta; 1976 Nov; 452(1):42-58. PubMed ID: 186124 [TBL] [Abstract][Full Text] [Related]
27. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Ryle MJ; Seefeldt LC Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928 [TBL] [Abstract][Full Text] [Related]
28. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135. Ryle MJ; Lanzilotta WN; Seefeldt LC Biochemistry; 1996 Jul; 35(29):9424-34. PubMed ID: 8755721 [TBL] [Abstract][Full Text] [Related]
29. Increasing nitrogenase catalytic efficiency for MgATP by changing serine 16 of its Fe protein to threonine: use of Mn2+ to show interaction of serine 16 with Mg2+. Seefeldt LC; Mortenson LE Protein Sci; 1993 Jan; 2(1):93-102. PubMed ID: 8443593 [TBL] [Abstract][Full Text] [Related]
30. Escherichia coli acetate kinase mechanism studied by net initial rate, equilibrium, and independent isotopic exchange kinetics. Skarstedt MT; Silverstein E J Biol Chem; 1976 Nov; 251(21):6775-83. PubMed ID: 185218 [TBL] [Abstract][Full Text] [Related]
31. Oxidation of nitrogenase iron protein by dioxygen without inactivation could contribute to high respiration rates of Azotobacter species and facilitate nitrogen fixation in other aerobic environments. Thorneley RN; Ashby GA Biochem J; 1989 Jul; 261(1):181-7. PubMed ID: 2673213 [TBL] [Abstract][Full Text] [Related]
32. The mechanism of Klebsiella pneumoniae nitrogenase action. The determination of rate constants required for the simulation of the kinetics of N2 reduction and H2 evolution. Lowe DJ; Thorneley RN Biochem J; 1984 Dec; 224(3):895-901. PubMed ID: 6395863 [TBL] [Abstract][Full Text] [Related]
33. Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: formation of a conformation resembling the MgATP-bound state by protein engineering. Ryle MJ; Seefeldt LC Biochemistry; 1996 Apr; 35(15):4766-75. PubMed ID: 8664266 [TBL] [Abstract][Full Text] [Related]
34. Evidence for a central role of lysine 15 of Azotobacter vinelandii nitrogenase iron protein in nucleotide binding and protein conformational changes. Ryle MJ; Lanzilotta WN; Mortenson LE; Watt GD; Seefeldt LC J Biol Chem; 1995 Jun; 270(22):13112-7. PubMed ID: 7768906 [TBL] [Abstract][Full Text] [Related]
35. Thermodynamics of nucleotide interactions with the Azotobacter vinelandii nitrogenase iron protein. Lanzilotta WN; Parker VD; Seefeldt LC Biochim Biophys Acta; 1999 Jan; 1429(2):411-21. PubMed ID: 9989226 [TBL] [Abstract][Full Text] [Related]
36. Nitrogenase of Klebsiella pneumoniae: a pre-steady state burst of ATP hydrolysis is coupled to electron transfer between the component proteins. Eady RR; Lowe DJ; Thorneley RN FEBS Lett; 1978 Nov; 95(2):211-3. PubMed ID: 363454 [No Abstract] [Full Text] [Related]
37. Nitrogenase: the reaction between the Fe protein and bathophenanthrolinedisulfonate as a probe for interactions with MgATP. Ljones T; Burris RH Biochemistry; 1978 May; 17(10):1866-72. PubMed ID: 656366 [TBL] [Abstract][Full Text] [Related]
38. The vanadium- and molybdenum-containing nitrogenases of Azotobacter chroococcum. Comparison of mid-point potentials and kinetics of reduction by sodium dithionite of the iron proteins with bound magnesium adenosine 5'-diphosphate. Bergström J; Eady RR; Thorneley RN Biochem J; 1988 Apr; 251(1):165-9. PubMed ID: 3164616 [TBL] [Abstract][Full Text] [Related]
39. Novel EPR signals associated with FeMoco centres of MoFe protein in MgADP-inhibited turnover of nitrogenase. Maritano S; Fairhurst SA; Eady RR FEBS Lett; 2001 Sep; 505(1):125-8. PubMed ID: 11557054 [TBL] [Abstract][Full Text] [Related]
40. The coupling of electron transfer in nitrogenase to the hydrolysis of magnesium adenosine triphosphate. Thorneley RN; Lowe DJ; Eday RR; Miller RW Biochem Soc Trans; 1979 Aug; 7(4):633-6. PubMed ID: 383544 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]