These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33603933)

  • 1. The Effect of Crank Resistance on Arm Configuration and Muscle Activation Variances in Arm Cycling Movements.
    Mravcsik M; Botzheim L; Zentai N; Piovesan D; Laczko J
    J Hum Kinet; 2021 Jan; 76():175-189. PubMed ID: 33603933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of gravity and kinematic constraints on muscle synergies in arm cycling.
    Botzheim L; Laczko J; Torricelli D; Mravcsik M; Pons JL; Oliveira Barroso F
    J Neurophysiol; 2021 Apr; 125(4):1367-1381. PubMed ID: 33534650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crank inertial load has little effect on steady-state pedaling coordination.
    Fregly BJ; Zajac FE; Dairaghi CA
    J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of crank configuration on muscle activity and torque production during arm crank ergometry.
    Smith PM; Chapman ML; Hazlehurst KE; Goss-Sampson MA
    J Electromyogr Kinesiol; 2008 Aug; 18(4):598-605. PubMed ID: 17337211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional model to predict muscle forces and their relation to motor variances in reaching arm movements.
    Tibold R; Fazekas G; Laczko J
    J Appl Biomech; 2011 Nov; 27(4):362-74. PubMed ID: 21896947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Cycling Limb Movements: Aspects for Rehabilitation.
    Laczko J; Mravcsik M; Katona P
    Adv Exp Med Biol; 2016; 957():273-289. PubMed ID: 28035571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jerk Decomposition during Bimanual Independent Arm Cranking.
    Botzheim L; Mravcsik M; Zsenak I; Piovesan D; Laczko J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():264-269. PubMed ID: 31374640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of double-joint arm posture in adults with unilateral brain damage.
    Mihaltchev P; Archambault PS; Feldman AG; Levin MF
    Exp Brain Res; 2005 Jun; 163(4):468-86. PubMed ID: 15690154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relation of hand and arm configuration variances while tracking geometric figures in Parkinson's disease: aspects for rehabilitation.
    Keresztényi Z; Cesari P; Fazekas G; Laczkó J
    Int J Rehabil Res; 2009 Mar; 32(1):53-63. PubMed ID: 19077724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of crank length and crank-axle height on standing arm-crank (grinding) power.
    Neville V; Pain MT; Kantor J; Folland JP
    Med Sci Sports Exerc; 2010 Feb; 42(2):381-7. PubMed ID: 19927020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling.
    Fregly BJ; Zajac FE
    J Biomech; 1996 Jan; 29(1):81-90. PubMed ID: 8839020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occupational cranking operations: The scapula perspective.
    Lin JH; Xu X
    Appl Ergon; 2019 Feb; 75():129-133. PubMed ID: 30509517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of cycling cadence on the phases of joint power, crank power, force and force effectiveness.
    Ettema G; Lorås H; Leirdal S
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e94-101. PubMed ID: 18178104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of pedal crank arm length on joint angle and power production in upright cycle ergometry.
    Too D; Landwer GE
    J Sports Sci; 2000 Mar; 18(3):153-61. PubMed ID: 10737266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity.
    Musampa NK; Mathieu PA; Levin MF
    Exp Brain Res; 2007 Aug; 181(4):579-93. PubMed ID: 17476486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of crank power and cadence on muscle fascicle shortening velocity, muscle activation and joint-specific power during cycling.
    Riveros-Matthey CD; Carroll TJ; Lichtwark GA; Connick MJ
    J Exp Biol; 2023 Jul; 226(13):. PubMed ID: 37326292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.