These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33604330)

  • 1. Design, Development and Optimization of a Functional Mammalian Cell-Free Protein Synthesis Platform.
    Heide C; Buldum G; Moya-Ramirez I; Ces O; Kontoravdi C; Polizzi KM
    Front Bioeng Biotechnol; 2020; 8():604091. PubMed ID: 33604330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-free protein synthesis using Chinese hamster ovary cells.
    Makrydaki E; Marshall O; Heide C; Buldum G; Kontoravdi C; Polizzi KM
    Methods Enzymol; 2021; 659():411-435. PubMed ID: 34752298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Cell-Free Protein Synthesis Systems Based on Chinese Hamster Ovary Cells.
    Thoring L; Kubick S
    Methods Mol Biol; 2018; 1850():289-308. PubMed ID: 30242694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a CHO-Based Cell-Free Platform for Synthesis of Active Monoclonal Antibodies.
    Martin RW; Majewska NI; Chen CX; Albanetti TE; Jimenez RBC; Schmelzer AE; Jewett MC; Roy V
    ACS Synth Biol; 2017 Jul; 6(7):1370-1379. PubMed ID: 28350472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly efficient human cell-free translation system.
    Aleksashin NA; Chang ST; Cate JHD
    RNA; 2023 Dec; 29(12):1960-1972. PubMed ID: 37793791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing cell-free protein expression in CHO: Assessing small molecule mass transfer effects in various reactor configurations.
    Peñalber-Johnstone C; Ge X; Tran K; Selock N; Sardesai N; Gurramkonda C; Pilli M; Tolosa M; Tolosa L; Kostov Y; Frey DD; Rao G
    Biotechnol Bioeng; 2017 Jul; 114(7):1478-1486. PubMed ID: 28266026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-free protein expression based on extracts from CHO cells.
    Brödel AK; Sonnabend A; Kubick S
    Biotechnol Bioeng; 2014 Jan; 111(1):25-36. PubMed ID: 24018795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly efficient human cell-free translation system.
    Aleksashin NA; Chang ST; Cate JHD
    bioRxiv; 2023 May; ():. PubMed ID: 36798401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens.
    Des Soye BJ; Davidson SR; Weinstock MT; Gibson DG; Jewett MC
    ACS Synth Biol; 2018 Sep; 7(9):2245-2255. PubMed ID: 30107122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates.
    Stech M; Nikolaeva O; Thoring L; Stöcklein WFM; Wüstenhagen DA; Hust M; Dübel S; Kubick S
    Sci Rep; 2017 Sep; 7(1):12030. PubMed ID: 28931913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.
    Hodgman CE; Jewett MC
    Biotechnol Bioeng; 2013 Oct; 110(10):2643-54. PubMed ID: 23832321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of Energy Metabolism through Growth Media Reformulation Enables a 24-Hour Workflow for Cell-Free Expression.
    Levine MZ; So B; Mullin AC; Fanter R; Dillard K; Watts KR; La Frano MR; Oza JP
    ACS Synth Biol; 2020 Oct; 9(10):2765-2774. PubMed ID: 32835484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing a high yielding streptomyces-based cell-free protein synthesis system.
    Li J; Wang H; Kwon YC; Jewett MC
    Biotechnol Bioeng; 2017 Jun; 114(6):1343-1353. PubMed ID: 28112394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishing a Eukaryotic
    Zhang L; Liu WQ; Li J
    Front Bioeng Biotechnol; 2020; 8():536. PubMed ID: 32626695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the Cell-Free Protein Synthesis System for Biomanufacturing of Monomeric Human Filaggrin.
    Kim J; Copeland CE; Seki K; Vögeli B; Kwon YC
    Front Bioeng Biotechnol; 2020; 8():590341. PubMed ID: 33195157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free protein synthesis systems derived from cultured mammalian cells.
    Brödel AK; Wüstenhagen DA; Kubick S
    Methods Mol Biol; 2015; 1261():129-40. PubMed ID: 25502197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Cells to Cell-Free Protein Synthesis within 24 Hours Using Cell-Free Autoinduction Workflow.
    Smith PEJ; Slouka T; Oza JP
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Streptomyces-Based Cell-Free Protein Synthesis System for High-Level Protein Expression.
    Xu H; Liu WQ; Li J
    Methods Mol Biol; 2022; 2433():89-103. PubMed ID: 34985739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology.
    Levine MZ; Gregorio NE; Jewett MC; Watts KR; Oza JP
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple Extract Preparation Methods for E. coli-Based Cell-Free Expression.
    Mullin AC; Slouka T; Oza JP
    Methods Mol Biol; 2022; 2433():51-64. PubMed ID: 34985736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.