These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A new histone deacetylase inhibitor remodels the tumor microenvironment by deletion of polymorphonuclear myeloid-derived suppressor cells and sensitizes prostate cancer to immunotherapy. Chen Z; Yang X; Chen Z; Li M; Wang W; Yang R; Wang Z; Ma Y; Xu Y; Ao S; Liang L; Cai C; Wang C; Deng T; Gu D; Zhou H; Zeng G BMC Med; 2023 Oct; 21(1):402. PubMed ID: 37880708 [TBL] [Abstract][Full Text] [Related]
23. Targeting interferon signaling and CTLA-4 enhance the therapeutic efficacy of anti-PD-1 immunotherapy in preclinical model of HPV Dorta-Estremera S; Hegde VL; Slay RB; Sun R; Yanamandra AV; Nicholas C; Nookala S; Sierra G; Curran MA; Sastry KJ J Immunother Cancer; 2019 Sep; 7(1):252. PubMed ID: 31533840 [TBL] [Abstract][Full Text] [Related]
24. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Grauers Wiktorin H; Nilsson MS; Kiffin R; Sander FE; Lenox B; Rydström A; Hellstrand K; Martner A Cancer Immunol Immunother; 2019 Feb; 68(2):163-174. PubMed ID: 30315349 [TBL] [Abstract][Full Text] [Related]
25. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262 [TBL] [Abstract][Full Text] [Related]
26. Oncolytic virus-mediated reducing of myeloid-derived suppressor cells enhances the efficacy of PD-L1 blockade in gemcitabine-resistant pancreatic cancer. Kajiwara Y; Tazawa H; Yamada M; Kanaya N; Fushimi T; Kikuchi S; Kuroda S; Ohara T; Noma K; Yoshida R; Umeda Y; Urata Y; Kagawa S; Fujiwara T Cancer Immunol Immunother; 2023 May; 72(5):1285-1300. PubMed ID: 36436021 [TBL] [Abstract][Full Text] [Related]
27. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. Loeuillard E; Yang J; Buckarma E; Wang J; Liu Y; Conboy C; Pavelko KD; Li Y; O'Brien D; Wang C; Graham RP; Smoot RL; Dong H; Ilyas S J Clin Invest; 2020 Oct; 130(10):5380-5396. PubMed ID: 32663198 [TBL] [Abstract][Full Text] [Related]
28. Anti-PD-1/PD-L1 Blockade Immunotherapy Employed in Treating Hepatitis B Virus Infection-Related Advanced Hepatocellular Carcinoma: A Literature Review. Li B; Yan C; Zhu J; Chen X; Fu Q; Zhang H; Tong Z; Liu L; Zheng Y; Zhao P; Jiang W; Fang W Front Immunol; 2020; 11():1037. PubMed ID: 32547550 [TBL] [Abstract][Full Text] [Related]
29. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade. Bai X; Zhou Y; Yokota Y; Matsumoto Y; Zhai B; Maarouf N; Hayashi H; Carlson R; Zhang S; Sousa A; Sun B; Ghanbari H; Dong X; Wands JR J Exp Clin Cancer Res; 2022 Apr; 41(1):132. PubMed ID: 35392977 [TBL] [Abstract][Full Text] [Related]
30. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis. Wang L; Zhu L; Liang C; Huang X; Liu Z; Huo J; Zhang Y; Zhang Y; Chen L; Xu H; Li X; Xu L; Kuang M; Wong CC; Yu J J Hepatol; 2023 Nov; 79(5):1185-1200. PubMed ID: 37459919 [TBL] [Abstract][Full Text] [Related]
31. Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D Regulation of Programmed Cell Death 1 Ligand 1 in Hepatocellular Carcinoma Cells. Xiang J; Zhang N; Sun H; Su L; Zhang C; Xu H; Feng J; Wang M; Chen J; Liu L; Shan J; Shen J; Yang Z; Wang G; Zhou H; Prieto J; Ávila MA; Liu C; Qian C Gastroenterology; 2020 Feb; 158(3):664-678.e24. PubMed ID: 31678303 [TBL] [Abstract][Full Text] [Related]
34. Impact of Microparticle Transarterial Chemoembolization (mTACE) on myeloid-derived suppressor cell subtypes in hepatocellular carcinoma: Clinical correlations and therapeutic implications. Yue Y; Ren Z; Wang Y; Liu Y; Yang X; Wang T; Bai Y; Zhou H; Chen Q; Li S; Zhang Y Immun Inflamm Dis; 2024 Sep; 12(9):e70007. PubMed ID: 39222024 [TBL] [Abstract][Full Text] [Related]
35. Ultra-thin layered double hydroxide-mediated photothermal therapy combine with asynchronous blockade of PD-L1 and NR2F6 inhibit hepatocellular carcinoma. Lu YF; Zhou JP; Zhou QM; Yang XY; Wang XJ; Yu JN; Zhang JG; Du YZ; Yu RS J Nanobiotechnology; 2022 Jul; 20(1):351. PubMed ID: 35907841 [TBL] [Abstract][Full Text] [Related]
36. S100A9 Tu X; Chen L; Zheng Y; Mu C; Zhang Z; Wang F; Ren Y; Duan Y; Zhang H; Tong Z; Liu L; Sun X; Zhao P; Wang L; Feng X; Fang W; Liu X J Exp Clin Cancer Res; 2024 Mar; 43(1):72. PubMed ID: 38454445 [TBL] [Abstract][Full Text] [Related]
37. Semaphorin4D Inhibition Improves Response to Immune-Checkpoint Blockade via Attenuation of MDSC Recruitment and Function. Clavijo PE; Friedman J; Robbins Y; Moore EC; Smith E; Zauderer M; Evans EE; Allen CT Cancer Immunol Res; 2019 Feb; 7(2):282-291. PubMed ID: 30514791 [TBL] [Abstract][Full Text] [Related]
38. Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19-IL2 cures poorly immunogenic tumors when combined with radiotherapy. Olivo Pimentel V; Marcus D; van der Wiel AM; Lieuwes NG; Biemans R; Lieverse RI; Neri D; Theys J; Yaromina A; Dubois LJ; Lambin P J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33688020 [TBL] [Abstract][Full Text] [Related]
39. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer. Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349 [TBL] [Abstract][Full Text] [Related]
40. Combined Effects of Anti-PD-L1 and Nanosonodynamic Therapy on HCC Immune Activation in Mice: An Investigation. Wei M; Wang X; Mo Y; Kong C; Zhang M; Qiu G; Tang Z; Chen J; Wu F Int J Nanomedicine; 2024; 19():7215-7236. PubMed ID: 39050875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]