These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33604654)

  • 21. SpatialWavePredict: a tutorial-based primer and toolbox for forecasting growth trajectories using the ensemble spatial wave sub-epidemic modeling framework.
    Chowell G; Tariq A; Dahal S; Bleichrodt A; Luo R; Hyman JM
    BMC Med Res Methodol; 2024 Jun; 24(1):131. PubMed ID: 38849766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan.
    Moein S; Nickaeen N; Roointan A; Borhani N; Heidary Z; Javanmard SH; Ghaisari J; Gheisari Y
    Sci Rep; 2021 Feb; 11(1):4725. PubMed ID: 33633275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pan-African evolution of within- and between-country COVID-19 dynamics.
    Ssentongo P; Fronterre C; Geronimo A; Greybush SJ; Mbabazi PK; Muvawala J; Nahalamba SB; Omadi PO; Opar BT; Sinnar SA; Wang Y; Whalen AJ; Held L; Jewell C; Muwanguzi AJB; Greatrex H; Norton MM; Diggle PJ; Schiff SJ
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34187879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods.
    Lynch CJ; Gore R
    Data Brief; 2021 Apr; 35():106759. PubMed ID: 33521186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forecasting COVID-19 Hospital Census: A Multivariate Time-Series Model Based on Local Infection Incidence.
    Nguyen HM; Turk PJ; McWilliams AD
    JMIR Public Health Surveill; 2021 Aug; 7(8):e28195. PubMed ID: 34346897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interruption time series analysis using autoregressive integrated moving average model: evaluating the impact of COVID-19 on the epidemic trend of gonorrhea in China.
    Li Y; Liu X; Li X; Xue C; Zhang B; Wang Y
    BMC Public Health; 2023 Oct; 23(1):2073. PubMed ID: 37872621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA.
    Chowell G; Dahal S; Tariq A; Roosa K; Hyman JM; Luo R
    PLoS Comput Biol; 2022 Oct; 18(10):e1010602. PubMed ID: 36201534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bayesian time-varying autoregressive models of COVID-19 epidemics.
    Giudici P; Tarantino B; Roy A
    Biom J; 2023 Jan; 65(1):e2200054. PubMed ID: 35876399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A farewell to
    Harvey A; Kattuman P
    J R Soc Interface; 2021 Sep; 18(182):20210179. PubMed ID: 34583564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forecasting the Severity of COVID-19 Pandemic Amidst the Emerging SARS-CoV-2 Variants: Adoption of ARIMA Model.
    Li C; Sampene AK; Agyeman FO; Robert B; Ayisi AL
    Comput Math Methods Med; 2022; 2022():3163854. PubMed ID: 35069779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gecko: A time-series model for COVID-19 hospital admission forecasting.
    Panaggio MJ; Rainwater-Lovett K; Nicholas PJ; Fang M; Bang H; Freeman J; Peterson E; Imbriale S
    Epidemics; 2022 Jun; 39():100580. PubMed ID: 35636313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forecasting the spread of COVID-19 based on policy, vaccination, and Omicron data.
    Han K; Lee B; Lee D; Heo G; Oh J; Lee S; Apio C; Park T
    Sci Rep; 2024 Apr; 14(1):9962. PubMed ID: 38693172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporating variant frequencies data into short-term forecasting for COVID-19 cases and deaths in the USA: a deep learning approach.
    Du H; Dong E; Badr HS; Petrone ME; Grubaugh ND; Gardner LM
    EBioMedicine; 2023 Mar; 89():104482. PubMed ID: 36821889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An ensemble
    Chowell G; Dahal S; Tariq A; Roosa K; Hyman JM; Luo R
    medRxiv; 2022 Jun; ():. PubMed ID: 35794886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of Predictive Models and Impact Assessment of Lockdown for COVID-19 over the United States.
    Makinde OS; Adeola AM; Abiodun GJ; Olusola-Makinde OO; Alejandro A
    J Epidemiol Glob Health; 2021 Jun; 11(2):200-207. PubMed ID: 33876598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of critical decision points for COVID-19 measures in Japan.
    Kim J; Matsunami K; Okamura K; Badr S; Sugiyama H
    Sci Rep; 2021 Aug; 11(1):16416. PubMed ID: 34385518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmission dynamics of the COVID-19 epidemic in England.
    Liu Y; Tang JW; Lam TTY
    Int J Infect Dis; 2021 Mar; 104():132-138. PubMed ID: 33359440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forecasting daily COVID-19 cases with gradient boosted regression trees and other methods: evidence from U.S. cities.
    Sen A; Stevens NT; Tran NK; Agarwal RR; Zhang Q; Dubin JA
    Front Public Health; 2023; 11():1259410. PubMed ID: 38146480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncertainty quantification in epidemiological models for the COVID-19 pandemic.
    Taghizadeh L; Karimi A; Heitzinger C
    Comput Biol Med; 2020 Oct; 125():104011. PubMed ID: 33091766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. COVID-19: Short term prediction model using daily incidence data.
    Zhao H; Merchant NN; McNulty A; Radcliff TA; Cote MJ; Fischer RSB; Sang H; Ory MG
    PLoS One; 2021; 16(4):e0250110. PubMed ID: 33852642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.