These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics. Yun HS; Kim SH; Khang D; Choi J; Kim HH; Kang M Int J Nanomedicine; 2011; 6():2521-31. PubMed ID: 22072886 [TBL] [Abstract][Full Text] [Related]
3. 3D-Printed Bioactive Calcium Silicate/Poly-ε-Caprolactone Bioscaffolds Modified with Biomimetic Extracellular Matrices for Bone Regeneration. Wu YA; Chiu YC; Lin YH; Ho CC; Shie MY; Chen YW Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30795573 [TBL] [Abstract][Full Text] [Related]
4. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Phipps MC; Clem WC; Grunda JM; Clines GA; Bellis SL Biomaterials; 2012 Jan; 33(2):524-34. PubMed ID: 22014462 [TBL] [Abstract][Full Text] [Related]
5. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications. Rindone AN; Nyberg E; Grayson WL Methods Mol Biol; 2018; 1577():209-226. PubMed ID: 28493213 [TBL] [Abstract][Full Text] [Related]
6. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Nyberg E; Rindone A; Dorafshar A; Grayson WL Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692 [TBL] [Abstract][Full Text] [Related]
7. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties. Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432 [TBL] [Abstract][Full Text] [Related]
9. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
10. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596 [TBL] [Abstract][Full Text] [Related]
11. Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds. Gendviliene I; Simoliunas E; Alksne M; Dibart S; Jasiuniene E; Cicenas V; Jacobs R; Bukelskiene V; Rutkunas V Eur Cell Mater; 2021 Feb; 41():204-215. PubMed ID: 33641140 [TBL] [Abstract][Full Text] [Related]
12. Decellularized extracellular matrix coupled with polycaprolactone/laponite to construct a biomimetic barrier membrane for bone defect repair. He M; Li L; Liu Y; Wu Z; Xu Y; Xiao L; Luo K; Xu X Int J Biol Macromol; 2024 Sep; 276(Pt 1):133775. PubMed ID: 38986979 [TBL] [Abstract][Full Text] [Related]
13. Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. Freeman FE; Browe DC; Nulty J; Von Euw S; Grayson WL; Kelly DJ Eur Cell Mater; 2019 Oct; 38():168-187. PubMed ID: 31602629 [TBL] [Abstract][Full Text] [Related]
14. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055 [TBL] [Abstract][Full Text] [Related]
16. A Biomimetic Fibrous Composite Scaffold with Nanotopography-Regulated Mineralization for Bone Defect Repair. Jiang K; Wang K; Luo C; Su BY; Du H; Liu Y; Lei J; Luo E; Cardon L; Edeleva M; Huang SS; Xu JZ; Li ZM Biomacromolecules; 2024 Jun; 25(6):3784-3794. PubMed ID: 38743836 [TBL] [Abstract][Full Text] [Related]
17. The inhibition by interleukin 1 of MSC chondrogenesis and the development of biomechanical properties in biomimetic 3D woven PCL scaffolds. Ousema PH; Moutos FT; Estes BT; Caplan AI; Lennon DP; Guilak F; Weinberg JB Biomaterials; 2012 Dec; 33(35):8967-74. PubMed ID: 22999467 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related]
19. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds. Kaynak Bayrak G; Demirtaş TT; Gümüşderelioğlu M Carbohydr Polym; 2017 Feb; 157():803-813. PubMed ID: 27987994 [TBL] [Abstract][Full Text] [Related]
20. Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications. Girão AF; Semitela Â; Pereira AL; Completo A; Marques PAAP J Mater Sci Mater Med; 2020 Jul; 31(8):69. PubMed ID: 32705408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]