These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33605960)

  • 1. An enhanced plasmonic photothermal effect for crystal transformation by a heat-trapping structure.
    Kong T; Zhang C; Lu J; Kang B; Fu Z; Li J; Yan L; Zhang Z; Zheng H; Xu H
    Nanoscale; 2021 Feb; 13(8):4585-4591. PubMed ID: 33605960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photoconversion performance of NdVO
    Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J
    Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon Driven Nanocrystal Transformation by Aluminum Nano-Islands with an Alumina Layer.
    Zhou X; Chen H; Zhang B; Zhang C; Zhang M; Xi L; Li J; Fu Z; Zheng H
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria.
    Guan G; Win KY; Yao X; Yang W; Han MY
    Adv Healthc Mater; 2021 Feb; 10(3):e2001158. PubMed ID: 33184997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Effect of Ag/Au Composite Structures on the Material Transition.
    Wang X; Zhang C; Zhou X; Fu Z; Yan L; Li J; Zhang Z; Zheng H
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.
    Ndukaife JC; Mishra A; Guler U; Nnanna AG; Wereley ST; Boltasseva A
    ACS Nano; 2014 Sep; 8(9):9035-43. PubMed ID: 25144369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films.
    Kang M; Ahn MS; Lee Y; Jeong KH
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37154-37159. PubMed ID: 28949500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal-effect dominated plasmonic catalysis on silver nanoislands.
    Kong T; Kang B; Wang W; Deckert-Gaudig T; Zhang Z; Deckert V
    Nanoscale; 2024 Jun; 16(22):10745-10750. PubMed ID: 38738933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Magnesium Nanoparticles Are Efficient Nanoheaters.
    West CA; Lomonosov V; Pehlivan ZS; Ringe E
    Nano Lett; 2023 Dec; 23(23):10964-10970. PubMed ID: 38011145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective Plasmon Coupling in Gold Nanoparticle Clusters for Highly Efficient Photothermal Therapy.
    Chen J; Gong M; Fan Y; Feng J; Han L; Xin HL; Cao M; Zhang Q; Zhang D; Lei D; Yin Y
    ACS Nano; 2022 Jan; 16(1):910-920. PubMed ID: 35023718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic nanotechnology for photothermal applications - an evaluation.
    Indhu AR; Keerthana L; Dharmalingam G
    Beilstein J Nanotechnol; 2023; 14():380-419. PubMed ID: 37025366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Copper Sulfide-Based Near-Infrared Photothermal Agents: Exploring the Limits of Macroscopic Heat Conversion.
    Marin R; Skripka A; Besteiro LV; Benayas A; Wang Z; Govorov AO; Canton P; Vetrone F
    Small; 2018 Dec; 14(49):e1803282. PubMed ID: 30334374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gap Effect on Electric Field Enhancement and Photothermal Conversion in Gold Nanostructures.
    Chiba H; Kodama K; Okada K; Ichikawa Y; Motosuke M
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanosecond photothermal effects in plasmonic nanostructures.
    Chen X; Chen Y; Yan M; Qiu M
    ACS Nano; 2012 Mar; 6(3):2550-7. PubMed ID: 22356648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Pt Superstructures with Boosted Near-Infrared Absorption and Photothermal Conversion Efficiency in the Second Biowindow for Cancer Therapy.
    Wang Q; Wang H; Yang Y; Jin L; Liu Y; Wang Y; Yan X; Xu J; Gao R; Lei P; Zhu J; Wang Y; Song S; Zhang H
    Adv Mater; 2019 Nov; 31(46):e1904836. PubMed ID: 31566280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured Black Aluminum Prepared by Laser Direct Writing as a High-Performance Plasmonic Absorber for Photothermal/Electric Conversion.
    Li N; Yang DJ; Shao Y; Liu Y; Tang J; Yang L; Sun T; Zhou W; Liu H; Xue G
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4305-4315. PubMed ID: 33427448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Plasmonic Particle Trapping Using a Hybrid Structure of Nanoparticles and Nanorods.
    Lee SY; Kim HM; Park J; Kim SK; Youn JR; Song YS
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41655-41663. PubMed ID: 30404444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.
    Xiong Y; Long R; Liu D; Zhong X; Wang C; Li ZY; Xie Y
    Nanoscale; 2012 Aug; 4(15):4416-20. PubMed ID: 22614804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications.
    Poletti A; Fracasso G; Conti G; Pilot R; Amendola V
    Nanoscale; 2015 Aug; 7(32):13702-14. PubMed ID: 26219425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.