These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 33606358)
21. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software. Idkaidek A; Jasiuk I J Robot Surg; 2015 Dec; 9(4):299-310. PubMed ID: 26530842 [TBL] [Abstract][Full Text] [Related]
22. Nonlinear compliance of elastic layers to indentation. Fessel A; Döbereiner HG Biomech Model Mechanobiol; 2018 Apr; 17(2):419-438. PubMed ID: 29094275 [TBL] [Abstract][Full Text] [Related]
23. Towards real-time finite-strain anisotropic thermo-visco-elastodynamic analysis of soft tissues for thermal ablative therapy. Zhang J; Lay RJ; Roberts SK; Chauhan S Comput Methods Programs Biomed; 2021 Jan; 198():105789. PubMed ID: 33069033 [TBL] [Abstract][Full Text] [Related]
24. Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Joldes GR; Wittek A; Miller K Med Image Anal; 2009 Dec; 13(6):912-9. PubMed ID: 19152791 [TBL] [Abstract][Full Text] [Related]
25. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. Ulrich D; van Rietbergen B; Weinans H; Rüegsegger P J Biomech; 1998 Dec; 31(12):1187-92. PubMed ID: 9882053 [TBL] [Abstract][Full Text] [Related]
26. A computational framework for biomaterials containing three-dimensional random fiber networks based on the affine kinematics. Jin T Biomech Model Mechanobiol; 2022 Apr; 21(2):685-708. PubMed ID: 35084592 [TBL] [Abstract][Full Text] [Related]
27. Extended Kalman Filter Nonlinear Finite Element Method for Nonlinear Soft Tissue Deformation. Xie H; Song J; Zhong Y; Li J; Gu C; Choi KS Comput Methods Programs Biomed; 2021 Mar; 200():105828. PubMed ID: 33199083 [TBL] [Abstract][Full Text] [Related]
28. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332 [TBL] [Abstract][Full Text] [Related]
29. Two different methods for numerical solution of the modified Burgers' equation. Karakoç SB; Başhan A; Geyikli T ScientificWorldJournal; 2014; 2014():780269. PubMed ID: 25162064 [TBL] [Abstract][Full Text] [Related]
30. Simulation of mechanical responses of fingertip to dynamic loading. Wu JZ; Dong RG; Rakheja S; Schopper AW Med Eng Phys; 2002 May; 24(4):253-64. PubMed ID: 11996844 [TBL] [Abstract][Full Text] [Related]
31. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations. Almeida ES; Spilker RL Comput Methods Biomech Biomed Engin; 1997; 1(1):25-46. PubMed ID: 11264795 [TBL] [Abstract][Full Text] [Related]
32. Simulation of 3D tumor cell growth using nonlinear finite element method. Dong S; Yan Y; Tang L; Meng J; Jiang Y Comput Methods Biomech Biomed Engin; 2016; 19(8):807-18. PubMed ID: 26213205 [TBL] [Abstract][Full Text] [Related]
33. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software. Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879 [TBL] [Abstract][Full Text] [Related]
34. Deficiencies in numerical models of anisotropic nonlinearly elastic materials. Ní Annaidh A; Destrade M; Gilchrist MD; Murphy JG Biomech Model Mechanobiol; 2013 Aug; 12(4):781-91. PubMed ID: 23011411 [TBL] [Abstract][Full Text] [Related]
35. Patient-specific model of brain deformation: application to medical image registration. Wittek A; Miller K; Kikinis R; Warfield SK J Biomech; 2007; 40(4):919-29. PubMed ID: 16678834 [TBL] [Abstract][Full Text] [Related]
36. Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model. San-Vicente G; Aguinaga I; Tomás Celigüeta J IEEE Trans Vis Comput Graph; 2012 Feb; 18(2):228-41. PubMed ID: 22156291 [TBL] [Abstract][Full Text] [Related]
37. An iterative finite element-based method for solving inverse problems in traction force microscopy. Cóndor M; García-Aznar JM Comput Methods Programs Biomed; 2019 Dec; 182():105056. PubMed ID: 31542705 [TBL] [Abstract][Full Text] [Related]
38. Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy. Brands D; Klawonn A; Rheinbach O; Schröder J Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):569-83. PubMed ID: 18608341 [TBL] [Abstract][Full Text] [Related]
39. Improving the stability of cardiac mechanical simulations. Land S; Niederer SA; Lamata P; Smith NP IEEE Trans Biomed Eng; 2015 Mar; 62(3):939-947. PubMed ID: 25474804 [TBL] [Abstract][Full Text] [Related]