These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33606944)

  • 1. Biomolecular Systems Engineering: Unlocking the Potential of Engineered Allostery via the Lactose Repressor Topology.
    Groseclose TM; Rondon RE; Hersey AN; Milner PT; Kim D; Zhang F; Realff MJ; Wilson CJ
    Annu Rev Biophys; 2021 May; 50():303-321. PubMed ID: 33606944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Alternate Ligand Recognition in the PurR Topology: A System of Novel Caffeine Biosensing Transcriptional Antirepressors.
    Rondon R; Wilson CJ
    ACS Synth Biol; 2021 Mar; 10(3):552-565. PubMed ID: 33689294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a New Class of Anti-LacI Transcription Factors with Alternate DNA Recognition.
    Rondon RE; Wilson CJ
    ACS Synth Biol; 2019 Feb; 8(2):307-317. PubMed ID: 30601657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering alternate cooperative-communications in the lactose repressor protein scaffold.
    Meyer S; Ramot R; Kishore Inampudi K; Luo B; Lin C; Amere S; Wilson CJ
    Protein Eng Des Sel; 2013 Jun; 26(6):433-43. PubMed ID: 23587523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional programming using engineered systems of transcription factors and genetic architectures.
    Rondon RE; Groseclose TM; Short AE; Wilson CJ
    Nat Commun; 2019 Oct; 10(1):4784. PubMed ID: 31636266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourteen Ways to Reroute Cooperative Communication in the Lactose Repressor: Engineering Regulatory Proteins with Alternate Repressive Functions.
    Richards DH; Meyer S; Wilson CJ
    ACS Synth Biol; 2017 Jan; 6(1):6-12. PubMed ID: 27598336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological signal processing filters via engineering allosteric transcription factors.
    Groseclose TM; Hersey AN; Huang BD; Realff MJ; Wilson CJ
    Proc Natl Acad Sci U S A; 2021 Nov; 118(46):. PubMed ID: 34772815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering allosteric communication.
    Herde ZD; Short AE; Kay VE; Huang BD; Realff MJ; Wilson CJ
    Curr Opin Struct Biol; 2020 Aug; 63():115-122. PubMed ID: 32575020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered systems of inducible anti-repressors for the next generation of biological programming.
    Groseclose TM; Rondon RE; Herde ZD; Aldrete CA; Wilson CJ
    Nat Commun; 2020 Sep; 11(1):4440. PubMed ID: 32895374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deconstruction of complex protein signaling switches: a roadmap toward engineering higher-order gene regulators.
    Davey JA; Wilson CJ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Nov; 9(6):. PubMed ID: 28185424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering allostery.
    Raman S; Taylor N; Genuth N; Fields S; Church GM
    Trends Genet; 2014 Dec; 30(12):521-8. PubMed ID: 25306102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered disulfide linking the hinge regions within lactose repressor dimer increases operator affinity, decreases sequence selectivity, and alters allostery.
    Falcon CM; Matthews KS
    Biochemistry; 2001 Dec; 40(51):15650-9. PubMed ID: 11747440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering DNA recognition and allosteric response properties of TetR family proteins by using a module-swapping strategy.
    Dimas RP; Jordan BR; Jiang XL; Martini C; Glavy JS; Patterson DP; Morcos F; Chan CTY
    Nucleic Acids Res; 2019 Sep; 47(16):8913-8925. PubMed ID: 31392336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards combinatorial transcriptional engineering.
    Mehrotra R; Renganaath K; Kanodia H; Loake GJ; Mehrotra S
    Biotechnol Adv; 2017; 35(3):390-405. PubMed ID: 28300614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered temperature compensation in a synthetic genetic clock.
    Hussain F; Gupta C; Hirning AJ; Ott W; Matthews KS; Josic K; Bennett MR
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):972-7. PubMed ID: 24395809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the Ultrasensitive Transcription Factors by Fusing a Modular Oligomerization Domain.
    Hou J; Zeng W; Zong Y; Chen Z; Miao C; Wang B; Lou C
    ACS Synth Biol; 2018 May; 7(5):1188-1194. PubMed ID: 29733626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering repressors with coevolutionary cues facilitates toggle switches with a master reset.
    Dimas RP; Jiang XL; Alberto de la Paz J; Morcos F; Chan CTY
    Nucleic Acids Res; 2019 Jun; 47(10):5449-5463. PubMed ID: 31162606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications.
    Weisenberger MS; Deans TL
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):599-614. PubMed ID: 29552703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-free gene-regulatory network engineering with synthetic transcription factors.
    Swank Z; Laohakunakorn N; Maerkl SJ
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5892-5901. PubMed ID: 30850530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Prediction of Fundamental Transcriptional Programs.
    Milner PT; Zhang Z; Herde ZD; Vedire NR; Zhang F; Realff MJ; Wilson CJ
    ACS Synth Biol; 2023 Apr; 12(4):1094-1108. PubMed ID: 36935615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.