BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33607167)

  • 1. Contribution of the hippocampus to performance on the traveling salesperson problem in rats.
    Hales JB; Petty EA; Collins G; Blaser RE
    Behav Brain Res; 2021 May; 405():113177. PubMed ID: 33607167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of the medial entorhinal cortex to performance on the Traveling Salesperson Problem in rats.
    Hales JB; Olivas L; Abouchedid D; Blaser RE
    Behav Brain Res; 2024 Apr; 463():114883. PubMed ID: 38281708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target number influences strategy use by rats (Rattus norvegicus) in the traveling salesperson problem.
    Paez K; Blaser RE
    J Comp Psychol; 2023 Nov; 137(4):238-248. PubMed ID: 38108798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation.
    Contreras M; Pelc T; Llofriu M; Weitzenfeld A; Fellous JM
    Hippocampus; 2018 Dec; 28(12):853-866. PubMed ID: 30067283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Traveling Salesman Problem (TSP): A Spatial Navigation Task for Rats.
    Blaser RE
    Bio Protoc; 2018 Jun; 8(11):e2870. PubMed ID: 34285984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Route selection by rats and humans in a navigational traveling salesman problem.
    Blaser RE; Ginchansky RR
    Anim Cogn; 2012 Mar; 15(2):239-50. PubMed ID: 21927849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some factors affecting performance of rats in the traveling salesman problem.
    Bellizzi C; Goldsteinholm K; Blaser RE
    Anim Cogn; 2015 Nov; 18(6):1207-19. PubMed ID: 26123082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian time-place (or time-route) learning in rats with hippocampal lesions.
    Cole E; Mistlberger RE; Merza D; Trigiani LJ; Madularu D; Simundic A; Mumby DG
    Neurobiol Learn Mem; 2016 Dec; 136():236-243. PubMed ID: 27622983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-world navigation in amnestic mild cognitive impairment: The relation to visuospatial memory and volume of hippocampal subregions.
    Peter J; Sandkamp R; Minkova L; Schumacher LV; Kaller CP; Abdulkadir A; Klöppel S
    Neuropsychologia; 2018 Jan; 109():86-94. PubMed ID: 29237555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shifting between response and place strategies in maze navigation: Effects of training, cue availability and functional inactivation of striatum or hippocampus in rats.
    Gasser J; Pereira de Vasconcelos A; Cosquer B; Boutillier AL; Cassel JC
    Neurobiol Learn Mem; 2020 Jan; 167():107131. PubMed ID: 31783128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory.
    Brown TI; Hasselmo ME; Stern CE
    Hippocampus; 2014 Jul; 24(7):819-39. PubMed ID: 24659134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamic and hippocampal mechanisms in spatial navigation: a dissociation between brain mechanisms for learning how versus learning where to navigate.
    Cain DP; Boon F; Corcoran ME
    Behav Brain Res; 2006 Jun; 170(2):241-56. PubMed ID: 16569442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine differentially modulates medial temporal lobe activity and behavior during spatial navigation in young and older adults.
    Baeuchl C; Glöckner F; Koch C; Petzold J; Schuck NW; Smolka MN; Li SC
    Neuroimage; 2023 Jun; 273():120099. PubMed ID: 37037380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practice makes proficient: pigeons (Columba livia) learn efficient routes on full-circuit navigational traveling salesperson problems.
    Baron DM; Ramirez AJ; Bulitko V; Madan CR; Greiner A; Hurd PL; Spetch ML
    Anim Cogn; 2015 Jan; 18(1):53-64. PubMed ID: 24966123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive specialization for spatial memory does not improve route efficiency: Comparing the ability of Clark's nutcrackers (Nucifraga columbiana) and pigeons (Columba livia) to solve traveling salesperson problems.
    Kelly D; Leonard K; Gibson B
    Psychon Bull Rev; 2021 Dec; 28(6):1991-2002. PubMed ID: 34159532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human aging alters the neural computation and representation of space.
    Schuck NW; Doeller CF; Polk TA; Lindenberger U; Li SC
    Neuroimage; 2015 Aug; 117():141-50. PubMed ID: 26003855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation.
    Miller J; Watrous AJ; Tsitsiklis M; Lee SA; Sheth SA; Schevon CA; Smith EH; Sperling MR; Sharan A; Asadi-Pooya AA; Worrell GA; Meisenhelter S; Inman CS; Davis KA; Lega B; Wanda PA; Das SR; Stein JM; Gorniak R; Jacobs J
    Nat Commun; 2018 Jun; 9(1):2423. PubMed ID: 29930307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritized memory access explains planning and hippocampal replay.
    Mattar MG; Daw ND
    Nat Neurosci; 2018 Nov; 21(11):1609-1617. PubMed ID: 30349103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.