BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 33607266)

  • 1. Use of CRISPR/Cas ribonucleoproteins for high throughput gene editing of induced pluripotent stem cells.
    Wang Q; Chear S; Wing K; Stellon D; Nguyen Tran MT; Talbot J; Pébay A; Hewitt AW; Cook AL
    Methods; 2021 Oct; 194():18-29. PubMed ID: 33607266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Editing the Genome of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes.
    Bruntraeger M; Byrne M; Long K; Bassett AR
    Methods Mol Biol; 2019; 1961():153-183. PubMed ID: 30912046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Editing of Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes to Model Genetic Ocular Diseases.
    Getachew H; Chinchilla B; Fernandez-Godino R
    Methods Mol Biol; 2022; 2549():321-334. PubMed ID: 34128206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 Genome Editing of Human-Induced Pluripotent Stem Cells Followed by Granulocytic Differentiation.
    Dannenmann B; Nasri M; Welte K; Skokowa J
    Methods Mol Biol; 2020; 2115():471-483. PubMed ID: 32006418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Cas9-based Genome Editing Using CRISPR Analysis Webtools in Severe Early-onset-obesity Patient-derived iPSCs.
    Patel A; Iannello G; Diaz AG; Sirabella D; Thaker V; Corneo B
    Curr Protoc; 2022 Aug; 2(8):e519. PubMed ID: 35950852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Editing in Human Induced Pluripotent Stem Cells Using Doxycycline-Inducible CRISPR-Cas9 System.
    Thamodaran V; Rani S; Velayudhan SR
    Methods Mol Biol; 2022; 2454():755-773. PubMed ID: 33830454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing Using Cas9-gRNA Ribonucleoprotein in Human Pluripotent Stem Cells for Disease Modeling.
    Benetó N; Grinberg D; Vilageliu L; Canals I
    Methods Mol Biol; 2022; 2549():409-425. PubMed ID: 33755903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 ribonucleoprotein-mediated knockin generation in hTERT-RPE1 cells.
    Ghetti S; Burigotto M; Mattivi A; Magnani G; Casini A; Bianchi A; Cereseto A; Fava LL
    STAR Protoc; 2021 Jun; 2(2):100407. PubMed ID: 33855309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-Mediated Genome Editing to Generate Clonal iPSC Lines.
    Sanjurjo-Soriano C; Erkilic N; Mamaeva D; Kalatzis V
    Methods Mol Biol; 2022; 2454():589-606. PubMed ID: 33755901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of Human Isogenic Induced Pluripotent Stem Cell Lines with CRISPR Prime Editing.
    Bonnycastle LL; Swift AJ; Mansell EC; Lee A; Winnicki E; Li ES; Robertson CC; Parsons VA; Huynh T; Krilow C; Mohlke KL; Erdos MR; Narisu N; Collins FS
    CRISPR J; 2024 Feb; 7(1):53-67. PubMed ID: 38353623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Gene Editing of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9.
    Yumlu S; Bashir S; Stumm J; Kühn R
    Methods Mol Biol; 2019; 1961():137-151. PubMed ID: 30912045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes].
    Li X; Shi W; Geng LZ; Xu JP
    Yi Chuan; 2020 Jun; 42(6):556-564. PubMed ID: 32694114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas-Mediated Knock-in of Genetically Encoded Fluorescent Biosensors into the AAVS1 Locus of Human-Induced Pluripotent Stem Cells.
    Stellon D; Tran MTN; Talbot J; Chear S; Khalid MKNM; Pébay A; Vickers JC; King AE; Hewitt AW; Cook AL
    Methods Mol Biol; 2022; 2549():379-398. PubMed ID: 34505269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9.
    Ben Jehuda R; Shemer Y; Binah O
    Stem Cell Rev Rep; 2018 Jun; 14(3):323-336. PubMed ID: 29623532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized electroporation of CRISPR-Cas9/gRNA ribonucleoprotein complex for selection-free homologous recombination in human pluripotent stem cells.
    Xu H; Kita Y; Bang U; Gee P; Hotta A
    STAR Protoc; 2021 Dec; 2(4):100965. PubMed ID: 34825222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise and efficient scarless genome editing in stem cells using CORRECT.
    Kwart D; Paquet D; Teo S; Tessier-Lavigne M
    Nat Protoc; 2017 Feb; 12(2):329-354. PubMed ID: 28102837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells.
    Giacalone JC; Sharma TP; Burnight ER; Fingert JF; Mullins RF; Stone EM; Tucker BA
    Curr Protoc Stem Cell Biol; 2018 Feb; 44():5B.7.1-5B.7.22. PubMed ID: 29512106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system.
    Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ
    J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 Ribonucleoprotein Complex-Mediated Efficient B2M Knockout in Human Induced Pluripotent Stem Cells (iPSCs).
    Thongsin N; Wattanapanitch M
    Methods Mol Biol; 2022; 2454():607-624. PubMed ID: 33945142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing in Human Induced Pluripotent Stem Cells (hiPSCs).
    Higo S; Hikoso S; Miyagawa S; Sakata Y
    Methods Mol Biol; 2021; 2320():235-245. PubMed ID: 34302662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.