These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33607352)

  • 21. Biorefinery approach for cassava-based industrial wastes: Current status and opportunities.
    Zhang M; Xie L; Yin Z; Khanal SK; Zhou Q
    Bioresour Technol; 2016 Sep; 215():50-62. PubMed ID: 27117291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review.
    Sarangi PK; Anand Singh T; Joykumar Singh N; Prasad Shadangi K; Srivastava RK; Singh AK; Chandel AK; Pareek N; Vivekanand V
    Bioresour Technol; 2022 May; 351():127085. PubMed ID: 35358673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Land-use and alternative bioenergy pathways for waste biomass.
    Campbell JE; Block E
    Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Halophiles and Their Vast Potential in Biofuel Production.
    Amoozegar MA; Safarpour A; Noghabi KA; Bakhtiary T; Ventosa A
    Front Microbiol; 2019; 10():1895. PubMed ID: 31507545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of agricultural waste biomass and recycling toward circular bioeconomy.
    Kumar Sarangi P; Subudhi S; Bhatia L; Saha K; Mudgil D; Prasad Shadangi K; Srivastava RK; Pattnaik B; Arya RK
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):8526-8539. PubMed ID: 35554831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in thermochemical methods for the conversion of algal biomass to energy.
    Das P; V P C; Mathimani T; Pugazhendhi A
    Sci Total Environ; 2021 Apr; 766():144608. PubMed ID: 33421791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation.
    Leong YK; Chen WH; Lee DJ; Chang JS
    J Hazard Mater; 2021 Sep; 418():126278. PubMed ID: 34098259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas.
    Gollany HT; Titus BD; Scott DA; Asbjornsen H; Resh SC; Chimner RA; Kaczmarek DJ; Leite LF; Ferreira AC; Rod KA; Hilbert J; Galdos MV; Cisz ME
    Environ Manage; 2015 Dec; 56(6):1330-55. PubMed ID: 26006220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.
    Kataki S; Hazarika S; Baruah DC
    Waste Manag; 2017 Jan; 59():102-117. PubMed ID: 27771200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques.
    Raina D; Kumar V; Saran S
    Chemosphere; 2022 May; 294():133712. PubMed ID: 35081402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electromagnetic biostimulation of living cultures for biotechnology, biofuel and bioenergy applications.
    Hunt RW; Zavalin A; Bhatnagar A; Chinnasamy S; Das KC
    Int J Mol Sci; 2009 Nov; 10(10):4515-4558. PubMed ID: 20057958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions.
    Woolf D; Lehmann J; Fisher EM; Angenent LT
    Environ Sci Technol; 2014 Jun; 48(11):6492-9. PubMed ID: 24787482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioenergy production in Pakistan: Potential, progress, and prospect.
    Khan S; Nisar A; Wu B; Zhu QL; Wang YW; Hu GQ; He MX
    Sci Total Environ; 2022 Mar; 814():152872. PubMed ID: 34990677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Valorization of agricultural wastes for biofuel applications.
    Awogbemi O; Kallon DVV
    Heliyon; 2022 Oct; 8(10):e11117. PubMed ID: 36303926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Palm oil and its wastes as bioenergy sources: a comprehensive review.
    Mahlia TMI; Ismail N; Hossain N; Silitonga AS; Shamsuddin AH
    Environ Sci Pollut Res Int; 2019 May; 26(15):14849-14866. PubMed ID: 30937750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives.
    Hoang AT; Nizetic S; Ong HC; Chong CT; Atabani AE; Pham VV
    J Environ Manage; 2021 Oct; 296():113194. PubMed ID: 34243094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Value addition through biohydrogen production and integrated processes from hydrothermal pretreatment of lignocellulosic biomass.
    Mohanakrishna G; Modestra JA
    Bioresour Technol; 2023 Feb; 369():128386. PubMed ID: 36423757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial biotechnological approaches: renewable bioprocessing for the future energy systems.
    Ramamurthy PC; Singh S; Kapoor D; Parihar P; Samuel J; Prasad R; Kumar A; Singh J
    Microb Cell Fact; 2021 Mar; 20(1):55. PubMed ID: 33653344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of biofuels from synthesis gas using microbial catalysts.
    Tirado-Acevedo O; Chinn MS; Grunden AM
    Adv Appl Microbiol; 2010; 70():57-92. PubMed ID: 20359454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances, current issues and future prospects of bioenergy production: A review.
    Liu T; Miao P; Shi Y; Tang KHD; Yap PS
    Sci Total Environ; 2022 Mar; 810():152181. PubMed ID: 34883167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.