These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Frantz B; Chakrabarty AM Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4460-4. PubMed ID: 3299368 [TBL] [Abstract][Full Text] [Related]
3. New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. Nikodem P; Hecht V; Schlömann M; Pieper DH J Bacteriol; 2003 Dec; 185(23):6790-800. PubMed ID: 14617643 [TBL] [Abstract][Full Text] [Related]
4. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. van der Meer JR; Eggen RI; Zehnder AJ; de Vos WM J Bacteriol; 1991 Apr; 173(8):2425-34. PubMed ID: 2013566 [TBL] [Abstract][Full Text] [Related]
5. Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. Eulberg D; Golovleva LA; Schlömann M J Bacteriol; 1997 Jan; 179(2):370-81. PubMed ID: 8990288 [TBL] [Abstract][Full Text] [Related]
6. Characterization of catechol- and chlorocatechol-degrading activity in the ortho-chlorinated benzoic acid-degrading Pseudomonas sp. CPE2 strain. Di Gioia D; Fava F; Baldoni F; Marchetti L Res Microbiol; 1998 May; 149(5):339-48. PubMed ID: 9766234 [TBL] [Abstract][Full Text] [Related]
7. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. Mars AE; Kingma J; Kaschabek SR; Reineke W; Janssen DB J Bacteriol; 1999 Feb; 181(4):1309-18. PubMed ID: 9973359 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a gene cluster involved in 4-chlorocatechol degradation by Pseudomonas reinekei MT1. Cámara B; Nikodem P; Bielecki P; Bobadilla R; Junca H; Pieper DH J Bacteriol; 2009 Aug; 191(15):4905-15. PubMed ID: 19465655 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence. Eulberg D; Kourbatova EM; Golovleva LA; Schlömann M J Bacteriol; 1998 Mar; 180(5):1082-94. PubMed ID: 9495745 [TBL] [Abstract][Full Text] [Related]
10. A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate. Cámara B; Bielecki P; Kaminski F; dos Santos VM; Plumeier I; Nikodem P; Pieper DH J Bacteriol; 2007 Mar; 189(5):1664-74. PubMed ID: 17172348 [TBL] [Abstract][Full Text] [Related]
11. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. Moiseeva OV; Solyanikova IP; Kaschabek SR; Gröning J; Thiel M; Golovleva LA; Schlömann M J Bacteriol; 2002 Oct; 184(19):5282-92. PubMed ID: 12218013 [TBL] [Abstract][Full Text] [Related]
13. Cloning and expression of the catA and catBC gene clusters from Pseudomonas aeruginosa PAO. Kukor JJ; Olsen RH; Ballou DP J Bacteriol; 1988 Oct; 170(10):4458-65. PubMed ID: 3139626 [TBL] [Abstract][Full Text] [Related]
14. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Liu S; Ogawa N; Miyashita K Gene; 2001 May; 268(1-2):207-14. PubMed ID: 11368916 [TBL] [Abstract][Full Text] [Related]
15. Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. Potrawfke T; Armengaud J; Wittich RM J Bacteriol; 2001 Feb; 183(3):997-1011. PubMed ID: 11208799 [TBL] [Abstract][Full Text] [Related]
16. Nucleotide homology and organization of chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Ghosal D; You IS Mol Gen Genet; 1988 Jan; 211(1):113-20. PubMed ID: 2830460 [TBL] [Abstract][Full Text] [Related]
17. Metabolism of 3-chlorobenzoate by a Pseudomonas (diff) spp. Vora KA; Modi VV Indian J Exp Biol; 1989 Nov; 27(11):967-71. PubMed ID: 2620936 [TBL] [Abstract][Full Text] [Related]
18. Reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol dioxygenases. Pascal RA; Huang DS Arch Biochem Biophys; 1986 Jul; 248(1):130-7. PubMed ID: 3015028 [TBL] [Abstract][Full Text] [Related]
19. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Dorn E; Knackmuss HJ Biochem J; 1978 Jul; 174(1):73-84. PubMed ID: 697765 [TBL] [Abstract][Full Text] [Related]
20. Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp. S-47. Noh SJ; Kim Y; Min KH; Karegoudar TB; Kim CK Mol Cells; 2000 Aug; 10(4):475-9. PubMed ID: 10987148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]