These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33607567)

  • 1. Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies.
    Keshavarz S; Faraji F; Rashchi F; Mokmeli M
    J Environ Manage; 2021 May; 285():112153. PubMed ID: 33607567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics.
    Faraji F; Golmohammadzadeh R; Rashchi F; Alimardani N
    J Environ Manage; 2018 Jul; 217():775-787. PubMed ID: 29660703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-enhanced reduction of manganese from a low-grade pyrolusite ore using pyrite: process optimization and kinetic studies.
    Lin S; Gao L; Yang Y; Liu R; Chen J; Guo S; Omran M; Chen G
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):58915-58926. PubMed ID: 35368238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.
    Bahaloo-Horeh N; Mousavi SM
    Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of copper from chalcopyrite ore by fungi.
    Rao DV; Shivannavar CT; Gaddad SM
    Indian J Exp Biol; 2002 Mar; 40(3):319-24. PubMed ID: 12635703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.
    Rasoulnia P; Mousavi SM
    Bioresour Technol; 2016 Sep; 216():729-36. PubMed ID: 27295250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of platinum recovery from a spent refinery catalyst with a hybrid of oxalic acid produced by Aspergillus niger and mineral acids.
    Malekian H; Salehi M; Biria D
    Waste Manag; 2019 Feb; 85():264-271. PubMed ID: 30803580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.
    Amin MM; Elaassy IE; El-Feky MG; Sallam AS; Talaat MS; Kawady NA
    J Environ Radioact; 2014 Aug; 134():76-82. PubMed ID: 24682031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioleaching of manganese by Aspergillus sp. isolated from mining deposits.
    Mohanty S; Ghosh S; Nayak S; Das AP
    Chemosphere; 2017 Apr; 172():302-309. PubMed ID: 28086158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.
    Han Y; Ma X; Zhao W; Chang Y; Zhang X; Wang X; Wang J; Huang Z
    J Biosci Bioeng; 2013 Oct; 116(4):465-71. PubMed ID: 23673133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis.
    Cui J; Zhu N; Mao F; Wu P; Dang Z
    Sci Total Environ; 2021 Oct; 790():148151. PubMed ID: 34111782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal bioleaching of metals from WPCBs of mobile phones employing mixed Aspergillus spp.: Optimization and predictive modelling by RSM and AI models.
    Trivedi A; Hait S
    J Environ Manage; 2024 Jan; 349():119565. PubMed ID: 37976642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals.
    Wei Z; Hillier S; Gadd GM
    Environ Microbiol; 2012 Jul; 14(7):1744-53. PubMed ID: 22591055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A greener approach for resource recycling: Manganese bioleaching.
    Ghosh S; Mohanty S; Akcil A; Sukla LB; Das AP
    Chemosphere; 2016 Jul; 154():628-639. PubMed ID: 27104228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions.
    Pathak A; Kothari R; Vinoba M; Habibi N; Tyagi VV
    J Environ Manage; 2021 Feb; 280():111789. PubMed ID: 33370668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger.
    Mulligan CN; Kamali M; Gibbs BF
    J Hazard Mater; 2004 Jul; 110(1-3):77-84. PubMed ID: 15177728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process.
    Vakilchap F; Mousavi SM; Shojaosadati SA
    Bioresour Technol; 2016 Oct; 218():991-8. PubMed ID: 27450129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced bio-recovery of aluminum from low-grade bauxite using adapted fungal strains.
    Shah SS; Palmieri MC; Sponchiado SRP; Bevilaqua D
    Braz J Microbiol; 2020 Dec; 51(4):1909-1918. PubMed ID: 32748245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.