These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33607570)

  • 1. Comparative research on morphology and mechanical property of integument of Rana dybowskii, Xenopus laevis and Ambystoma mexicanum.
    Li M; Gao Z; Dai T; Chen D; Tong J; Guo L; Wang C
    J Mech Behav Biomed Mater; 2021 May; 117():104382. PubMed ID: 33607570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The movement of the prospective eye vesicles from the neural plate into the neural fold in Ambystoma mexicanum and Xenopus laevis.
    Brun RB
    Dev Biol; 1981 Nov; 88(1):192-9. PubMed ID: 7286445
    [No Abstract]   [Full Text] [Related]  

  • 3. An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians.
    Youn BW; Keller RE; Malacinski GM
    J Embryol Exp Morphol; 1980 Oct; 59():223-47. PubMed ID: 6971322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of adrenergic ligands to liver plasma membrane preparations from the axolotl, Ambystoma mexicanum; the toad, Xenopus laevis; and the Australian lungfish, Neoceratodus forsteri.
    Janssens PA; Grigg JA
    Gen Comp Endocrinol; 1988 Sep; 71(3):524-30. PubMed ID: 2847957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperation behavior of fore- And hindlimbs during jumping in
    Li M; Gao Z; Wang J; Song W; Zhang Q; Tong J; Ren L
    Ecol Evol; 2021 Jun; 11(12):7569-7578. PubMed ID: 34188835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utricular otoconia of some amphibians have calcitic morphology.
    Pote KG; Ross MD
    Hear Res; 1993 May; 67(1-2):189-97. PubMed ID: 8340270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of the mesoderm in an anuran, Xenopus laevis, and a urodele, Ambystoma mexicanum.
    Smith JC; Malacinski GM
    Dev Biol; 1983 Jul; 98(1):250-4. PubMed ID: 6862108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compatible limb patterning mechanisms in urodeles and anurans.
    Sessions SK; Gardiner DM; Bryant SV
    Dev Biol; 1989 Feb; 131(2):294-301. PubMed ID: 2912797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of an amphibian-based assay using the larvae of Xenopus laevis and Ambystoma mexicanum.
    Saka M
    Ecotoxicol Environ Saf; 2003 May; 55(1):38-45. PubMed ID: 12706392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mauthner neurons survive metamorphosis in anurans: a comparative HRP study on the cytoarchitecture of Mauthner neurons in amphibians.
    Will U
    J Comp Neurol; 1986 Feb; 244(1):111-20. PubMed ID: 3081602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of the numbers and species of amphibia used in the United Kingdom in 1977.
    Donnelly HT
    Lab Anim; 1980 Jan; 14(1):65-9. PubMed ID: 6965743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral and polarization sensitivity of photocurrents of amphibian rods in the visible and ultraviolet.
    Palacios AG; Srivastava R; Goldsmith TH
    Vis Neurosci; 1998; 15(2):319-31. PubMed ID: 9605532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valproic acid induced abnormal development of the central nervous system of three species of amphibians: implications for neural tube defects and alternative experimental systems.
    Oberemm A; Kirschbaum F
    Teratog Carcinog Mutagen; 1992; 12(6):251-62. PubMed ID: 1363963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos.
    Gillespie JI
    J Physiol; 1983 Nov; 344():359-77. PubMed ID: 6655587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic and cortical factors participating in cleavage furrow formation in eggs of three amphibian genera; Ambystoma, Xenopus and Cynops.
    Sawai T
    J Embryol Exp Morphol; 1983 Oct; 77():243-54. PubMed ID: 6655432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.
    Kurth T; Berger J; Wilsch-Bräuninger M; Kretschmar S; Cerny R; Schwarz H; Löfberg J; Piendl T; Epperlein HH
    Methods Cell Biol; 2010; 96():395-423. PubMed ID: 20869532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Invariability of the H-Y antigen expression in the heterogametic sex of some amphbians and evidence for sexual dimophrism of the antigen expression in Pelodytes punctatus D (Amphibia, Anura)].
    Zaborski P
    C R Seances Acad Sci D; 1979 Dec; 289(15):1153-6. PubMed ID: 121269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete mitochondrial genomes of two brown frogs, Rana dybowskii and Rana cf. chensinensis (Anura: Ranidae).
    Li J; Lei G; Fu C
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):155-6. PubMed ID: 24450711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central projections of the nervus terminalis in four species of amphibians.
    Hofmann MH; Meyer DL
    Brain Behav Evol; 1989; 34(5):301-7. PubMed ID: 2514961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos.
    Roberts A; Patton DT
    J Neurosci Res; 1985; 13(1-2):23-38. PubMed ID: 3871863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.