These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33607885)

  • 1. Uncertainty estimation for molecular dynamics and sampling.
    Imbalzano G; Zhuang Y; Kapil V; Rossi K; Engel EA; Grasselli F; Ceriotti M
    J Chem Phys; 2021 Feb; 154(7):074102. PubMed ID: 33607885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio machine learning of phase space averages.
    Weinreich J; Lemm D; von Rudorff GF; von Lilienfeld OA
    J Chem Phys; 2022 Jul; 157(2):024303. PubMed ID: 35840379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and Accurate Uncertainty Estimation in Chemical Machine Learning.
    Musil F; Willatt MJ; Langovoy MA; Ceriotti M
    J Chem Theory Comput; 2019 Feb; 15(2):906-915. PubMed ID: 30605342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-Learning Based Stacked Ensemble Model for Accurate Analysis of Molecular Dynamics Simulations.
    Singh SK; Bejagam KK; An Y; Deshmukh SA
    J Phys Chem A; 2019 Jun; 123(24):5190-5198. PubMed ID: 31150239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated discovery of a robust interatomic potential for aluminum.
    Smith JS; Nebgen B; Mathew N; Chen J; Lubbers N; Burakovsky L; Tretiak S; Nam HA; Germann T; Fensin S; Barros K
    Nat Commun; 2021 Feb; 12(1):1257. PubMed ID: 33623036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addressing uncertainty in atomistic machine learning.
    Peterson AA; Christensen R; Khorshidi A
    Phys Chem Chem Phys; 2017 May; 19(18):10978-10985. PubMed ID: 28418054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty quantification of DFT-predicted finite temperature thermodynamic properties within the Debye model.
    Guan PW; Houchins G; Viswanathan V
    J Chem Phys; 2019 Dec; 151(24):244702. PubMed ID: 31893922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning dielectric screening for the simulation of excited state properties of molecules and materials.
    Dong SS; Govoni M; Galli G
    Chem Sci; 2021 Mar; 12(13):4970-4980. PubMed ID: 34163744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks.
    Schwalbe-Koda D; Tan AR; Gómez-Bombarelli R
    Nat Commun; 2021 Aug; 12(1):5104. PubMed ID: 34429418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast uncertainty estimates in deep learning interatomic potentials.
    Zhu A; Batzner S; Musaelian A; Kozinsky B
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37102453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning molecular dynamics for the simulation of infrared spectra.
    Gastegger M; Behler J; Marquetand P
    Chem Sci; 2017 Oct; 8(10):6924-6935. PubMed ID: 29147518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active learning of many-body configuration space: Application to the Cs
    Zhai Y; Caruso A; Gao S; Paesani F
    J Chem Phys; 2020 Apr; 152(14):144103. PubMed ID: 32295371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-order averaging schemes with error bounds for thermodynamical properties calculations by molecular dynamics simulations.
    Cancès E; Castella F; Chartier P; Faou E; Le Bris C; Legoll F; Turinici G
    J Chem Phys; 2004 Dec; 121(21):10346-55. PubMed ID: 15549912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-time methods for molecular dynamics simulations: Markov State Models and Milestoning.
    Narayan B; Yuan Y; Fathizadeh A; Elber R; Buchete NV
    Prog Mol Biol Transl Sci; 2020; 170():215-237. PubMed ID: 32145946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective sampling of transition paths.
    Fu X; Yang L; Gao YQ
    J Chem Phys; 2007 Oct; 127(15):154106. PubMed ID: 17949131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity.
    Liu R; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.