These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33607903)

  • 21. Massive non-natural proteins structure prediction using grid technologies.
    Minervini G; Evangelista G; Villanova L; Slanzi D; De Lucrezia D; Poli I; Luisi PL; Polticelli F
    BMC Bioinformatics; 2009 Jun; 10 Suppl 6(Suppl 6):S22. PubMed ID: 19534748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CS-ROSETTA.
    Nerli S; Sgourakis NG
    Methods Enzymol; 2019; 614():321-362. PubMed ID: 30611429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The designability of protein structures.
    Helling R; Li H; Mélin R; Miller J; Wingreen N; Zeng C; Tang C
    J Mol Graph Model; 2001; 19(1):157-67. PubMed ID: 11381527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thoroughly sampling sequence space: large-scale protein design of structural ensembles.
    Larson SM; England JL; Desjarlais JR; Pande VS
    Protein Sci; 2002 Dec; 11(12):2804-13. PubMed ID: 12441379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computational method for the design of nested proteins by loop-directed domain insertion.
    Blacklock KM; Yang L; Mulligan VK; Khare SD
    Proteins; 2018 Mar; 86(3):354-369. PubMed ID: 29250820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SimFold energy function for de novo protein structure prediction: consensus with Rosetta.
    Fujitsuka Y; Chikenji G; Takada S
    Proteins; 2006 Feb; 62(2):381-98. PubMed ID: 16294329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developing optimal non-linear scoring function for protein design.
    Hu C; Li X; Liang J
    Bioinformatics; 2004 Nov; 20(17):3080-98. PubMed ID: 15217818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific nucleus as the transition state for protein folding: evidence from the lattice model.
    Abkevich VI; Gutin AM; Shakhnovich EI
    Biochemistry; 1994 Aug; 33(33):10026-36. PubMed ID: 8060971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased detection of structural templates using alignments of designed sequences.
    Larson SM; Garg A; Desjarlais JR; Pande VS
    Proteins; 2003 May; 51(3):390-6. PubMed ID: 12696050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localizing Frustration in Proteins Using All-Atom Energy Functions.
    Chen J; Schafer NP; Wolynes PG; Clementi C
    J Phys Chem B; 2019 May; 123(21):4497-4504. PubMed ID: 31063375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extensive exploration of conformational space improves Rosetta results for short protein domains.
    Li Y; Bordner AJ; Tian Y; Tao X; Gorin AA
    Comput Syst Bioinformatics Conf; 2008; 7():203-9. PubMed ID: 19642281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteins of well-defined structures can be designed without backbone readjustment by a statistical model.
    Zhou X; Xiong P; Wang M; Ma R; Zhang J; Chen Q; Liu H
    J Struct Biol; 2016 Dec; 196(3):350-357. PubMed ID: 27522946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Super folds, networks, and barriers.
    Burke S; Elber R
    Proteins; 2012 Feb; 80(2):463-70. PubMed ID: 22095563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rosetta:MSF: a modular framework for multi-state computational protein design.
    Löffler P; Schmitz S; Hupfeld E; Sterner R; Merkl R
    PLoS Comput Biol; 2017 Jun; 13(6):e1005600. PubMed ID: 28604768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In search of the ideal protein sequence.
    Godzik A
    Protein Eng; 1995 May; 8(5):409-16. PubMed ID: 8532661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing protein structures and complexes with the molecular modeling program Rosetta.
    Kuhlman B
    J Biol Chem; 2019 Dec; 294(50):19436-19443. PubMed ID: 31699898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring Intrinsic Disorder and Tracking Conformational Transitions Using Rosetta ResidueDisorder.
    Seffernick JT; Ren H; Kim SS; Lindert S
    J Phys Chem B; 2019 Aug; 123(33):7103-7112. PubMed ID: 31411026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic Comparison of Amber and Rosetta Energy Functions for Protein Structure Evaluation.
    Rubenstein AB; Blacklock K; Nguyen H; Case DA; Khare SD
    J Chem Theory Comput; 2018 Nov; 14(11):6015-6025. PubMed ID: 30240210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.