These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33607903)

  • 41. A self-consistent knowledge-based approach to protein design.
    Rossi A; Micheletti C; Seno F; Maritan A
    Biophys J; 2001 Jan; 80(1):480-90. PubMed ID: 11159418
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.
    Michnick SW; Shakhnovich E
    Fold Des; 1998; 3(4):239-51. PubMed ID: 9710570
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effective scoring function for protein sequence design.
    Liang S; Grishin NV
    Proteins; 2004 Feb; 54(2):271-81. PubMed ID: 14696189
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Native protein sequences are close to optimal for their structures.
    Kuhlman B; Baker D
    Proc Natl Acad Sci U S A; 2000 Sep; 97(19):10383-8. PubMed ID: 10984534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional rapidly folding proteins from simplified amino acid sequences.
    Riddle DS; Santiago JV; Bray-Hall ST; Doshi N; Grantcharova VP; Yi Q; Baker D
    Nat Struct Biol; 1997 Oct; 4(10):805-9. PubMed ID: 9334745
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Turncoat Polypeptides: We Adapt to Our Environment.
    Zamora-Carreras H; Maestro B; Sanz JM; Jiménez MA
    Chembiochem; 2020 Feb; 21(4):432-441. PubMed ID: 31456307
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emergence of preferred structures in a simple model of protein folding.
    Li H; Helling R; Tang C; Wingreen N
    Science; 1996 Aug; 273(5275):666-9. PubMed ID: 8662562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring the Levinthal limit in protein folding.
    Cruzeiro L; Degrève L
    J Biol Phys; 2017 Mar; 43(1):15-30. PubMed ID: 27743150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. raf RBD and ubiquitin proteins share similar folds, folding rates and mechanisms despite having unrelated amino acid sequences.
    Vallée-Bélisle A; Turcotte JF; Michnick SW
    Biochemistry; 2004 Jul; 43(26):8447-58. PubMed ID: 15222756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational design of proteins stereochemically optimized in size, stability, and folding speed.
    Joshi S; Rana S; Wangikar P; Durani S
    Biopolymers; 2006 Oct; 83(2):122-34. PubMed ID: 16683262
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure-based design of model proteins.
    Banavar JR; Cieplak M; Maritan A; Nadig G; Seno F; Vishveshwara S
    Proteins; 1998 Apr; 31(1):10-20. PubMed ID: 9552155
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational protein design: software implementation, parameter optimization, and performance of a simple model.
    Schmidt Am Busch M; Lopes A; Mignon D; Simonson T
    J Comput Chem; 2008 May; 29(7):1092-102. PubMed ID: 18069664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. De novo protein design. II. Plasticity in sequence space.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1183-93. PubMed ID: 10547294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protocols for Requirement-Driven Protein Design in the Rosetta Modeling Program.
    Guffy SL; Teets FD; Langlois MI; Kuhlman B
    J Chem Inf Model; 2018 May; 58(5):895-901. PubMed ID: 29659276
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Evolution-Based Approach to De Novo Protein Design.
    Brender JR; Shultis D; Khattak NA; Zhang Y
    Methods Mol Biol; 2017; 1529():243-264. PubMed ID: 27914055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computer simulations of de novo designed helical proteins.
    Sikorski A; Kolinski A; Skolnick J
    Biophys J; 1998 Jul; 75(1):92-105. PubMed ID: 9649370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential implications of availability of short amino acid sequences in proteins: an old and new approach to protein decoding and design.
    Otaki JM; Gotoh T; Yamamoto H
    Biotechnol Annu Rev; 2008; 14():109-41. PubMed ID: 18606361
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast, cheap and out of control--Insights into thermodynamic and informatic constraints on natural protein sequences from de novo protein design.
    Brisendine JM; Koder RL
    Biochim Biophys Acta; 2016 May; 1857(5):485-492. PubMed ID: 26498191
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function.
    Bowie JU; Eisenberg D
    Proc Natl Acad Sci U S A; 1994 May; 91(10):4436-40. PubMed ID: 8183927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic protein design with all atom force-fields by exact and heuristic optimization.
    Wernisch L; Hery S; Wodak SJ
    J Mol Biol; 2000 Aug; 301(3):713-36. PubMed ID: 10966779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.