These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33607903)

  • 61. Physical origins of protein superfamilies.
    Zeldovich KB; Berezovsky IN; Shakhnovich EI
    J Mol Biol; 2006 Apr; 357(4):1335-43. PubMed ID: 16483605
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improving the performance of Rosetta using multiple sequence alignment information and global measures of hydrophobic core formation.
    Bonneau R; Strauss CE; Baker D
    Proteins; 2001 Apr; 43(1):1-11. PubMed ID: 11170209
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Kinetics of protein folding. A lattice model study of the requirements for folding to the native state.
    Sali A; Shakhnovich E; Karplus M
    J Mol Biol; 1994 Feb; 235(5):1614-36. PubMed ID: 8107095
    [TBL] [Abstract][Full Text] [Related]  

  • 64. De novo protein design. I. In search of stability and specificity.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1161-81. PubMed ID: 10547293
    [TBL] [Abstract][Full Text] [Related]  

  • 65. How Many Protein Sequences Fold to a Given Structure? A Coevolutionary Analysis.
    Tian P; Best RB
    Biophys J; 2017 Oct; 113(8):1719-1730. PubMed ID: 29045866
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structure-approximating inverse protein folding problem in the 2D HP model.
    Gupta A; Manuch J; Stacho L
    J Comput Biol; 2005 Dec; 12(10):1328-45. PubMed ID: 16379538
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Computational design of closely related proteins that adopt two well-defined but structurally divergent folds.
    Wei KY; Moschidi D; Bick MJ; Nerli S; McShan AC; Carter LP; Huang PS; Fletcher DA; Sgourakis NG; Boyken SE; Baker D
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7208-7215. PubMed ID: 32188784
    [TBL] [Abstract][Full Text] [Related]  

  • 68. From structure to sequence and back again.
    Hinds DA; Levitt M
    J Mol Biol; 1996 Apr; 258(1):201-9. PubMed ID: 8613988
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Practically useful: what the Rosetta protein modeling suite can do for you.
    Kaufmann KW; Lemmon GH; Deluca SL; Sheehan JH; Meiler J
    Biochemistry; 2010 Apr; 49(14):2987-98. PubMed ID: 20235548
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A gradient-directed Monte Carlo approach for protein design.
    Hu X; Hu H; Beratan DN; Yang W
    J Comput Chem; 2010 Aug; 31(11):2164-8. PubMed ID: 20186860
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The native sequence determines sidechain packing in a protein, but does optimal sidechain packing determine the native sequence?
    Koehl P; Delarue M
    Pac Symp Biocomput; 1997; ():198-209. PubMed ID: 9390292
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins.
    Liwo A; Khalili M; Czaplewski C; Kalinowski S; OƂdziej S; Wachucik K; Scheraga HA
    J Phys Chem B; 2007 Jan; 111(1):260-85. PubMed ID: 17201450
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Protein backbone ensemble generation explores the local structural space of unseen natural homologs.
    Schenkelberg CD; Bystroff C
    Bioinformatics; 2016 May; 32(10):1454-61. PubMed ID: 26787668
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind.
    Alam N; Schueler-Furman O
    Methods Mol Biol; 2017; 1561():139-169. PubMed ID: 28236237
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Improved cryoEM-Guided Iterative Molecular Dynamics--Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction.
    Lindert S; McCammon JA
    J Chem Theory Comput; 2015 Mar; 11(3):1337-46. PubMed ID: 25883538
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences.
    Sevy AM; Jacobs TM; Crowe JE; Meiler J
    PLoS Comput Biol; 2015 Jul; 11(7):e1004300. PubMed ID: 26147100
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Filling-in void and sparse regions in protein sequence space by protein-like artificial sequences enables remarkable enhancement in remote homology detection capability.
    Mudgal R; Sowdhamini R; Chandra N; Srinivasan N; Sandhya S
    J Mol Biol; 2014 Feb; 426(4):962-79. PubMed ID: 24316367
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models?
    Taly JF; Marin A; Gibrat JF
    BMC Bioinformatics; 2008 Jan; 9():6. PubMed ID: 18179702
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evaluating the accuracy of protein design using native secondary sub-structures.
    Movahedi M; Zare-Mirakabad F; Arab SS
    BMC Bioinformatics; 2016 Sep; 17(1):353. PubMed ID: 27597167
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Computational protein design is a challenge for implicit solvation models.
    Jaramillo A; Wodak SJ
    Biophys J; 2005 Jan; 88(1):156-71. PubMed ID: 15377512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.