These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33608514)

  • 1. Robust inference of kinase activity using functional networks.
    Yılmaz S; Ayati M; Schlatzer D; Çiçek AE; Chance MR; Koyutürk M
    Nat Commun; 2021 Feb; 12(1):1177. PubMed ID: 33608514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological Network Inference and analysis using SEBINI and CABIN.
    Taylor R; Singhal M
    Methods Mol Biol; 2009; 541():551-76. PubMed ID: 19381531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.
    Domanova W; Krycer J; Chaudhuri R; Yang P; Vafaee F; Fazakerley D; Humphrey S; James D; Kuncic Z
    PLoS One; 2016; 11(6):e0157763. PubMed ID: 27336693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases.
    Beekhof R; van Alphen C; Henneman AA; Knol JC; Pham TV; Rolfs F; Labots M; Henneberry E; Le Large TY; de Haas RR; Piersma SR; Vurchio V; Bertotti A; Trusolino L; Verheul HM; Jimenez CR
    Mol Syst Biol; 2019 Apr; 15(4):e8250. PubMed ID: 30979792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of co-phosphorylation networks.
    Ayati M; Yılmaz S; Chance MR; Koyuturk M
    Bioinformatics; 2022 Aug; 38(15):3785-3793. PubMed ID: 35731218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of phosphorylation networks in humans.
    Hu J; Rho HS; Newman RH; Hwang W; Neiswinger J; Zhu H; Zhang J; Qian J
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):224-31. PubMed ID: 23524292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast.
    Bodenmiller B; Wanka S; Kraft C; Urban J; Campbell D; Pedrioli PG; Gerrits B; Picotti P; Lam H; Vitek O; Brusniak MY; Roschitzki B; Zhang C; Shokat KM; Schlapbach R; Colman-Lerner A; Nolan GP; Nesvizhskii AI; Peter M; Loewith R; von Mering C; Aebersold R
    Sci Signal; 2010 Dec; 3(153):rs4. PubMed ID: 21177495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.
    Hill SM; Nesser NK; Johnson-Camacho K; Jeffress M; Johnson A; Boniface C; Spencer SE; Lu Y; Heiser LM; Lawrence Y; Pande NT; Korkola JE; Gray JW; Mills GB; Mukherjee S; Spellman PT
    Cell Syst; 2017 Jan; 4(1):73-83.e10. PubMed ID: 28017544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAMNetWeb: identifying condition-specific networks linking signaling and transcription.
    Gosline SJ; Oh C; Fraenkel E
    Bioinformatics; 2015 Apr; 31(7):1124-6. PubMed ID: 25414365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring kinase activity from phosphoproteomic data: Tool comparison and recent applications.
    Piersma SR; Valles-Marti A; Rolfs F; Pham TV; Henneman AA; Jiménez CR
    Mass Spectrom Rev; 2024; 43(4):725-751. PubMed ID: 36156810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomics-Based Profiling of Kinase Activities in Cancer Cells.
    Wirbel J; Cutillas P; Saez-Rodriguez J
    Methods Mol Biol; 2018; 1711():103-132. PubMed ID: 29344887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An argument for mechanism-based statistical inference in cancer.
    Geman D; Ochs M; Price ND; Tomasetti C; Younes L
    Hum Genet; 2015 May; 134(5):479-95. PubMed ID: 25381197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.
    Yao Q; Xu D
    Methods Mol Biol; 2017; 1558():127-138. PubMed ID: 28150236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipathway kinase signatures of multipotent stromal cells are predictive for osteogenic differentiation: tissue-specific stem cells.
    Platt MO; Wilder CL; Wells A; Griffith LG; Lauffenburger DA
    Stem Cells; 2009 Nov; 27(11):2804-14. PubMed ID: 19750537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling signaling networks using high-throughput phospho-proteomics.
    Terfve C; Saez-Rodriguez J
    Adv Exp Med Biol; 2012; 736():19-57. PubMed ID: 22161321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks.
    Gillani Z; Akash MS; Rahaman MD; Chen M
    BMC Bioinformatics; 2014 Nov; 15(1):395. PubMed ID: 25433465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Alzheimer's and Parkinson's diseases networks using graph communities structure.
    Calderone A; Formenti M; Aprea F; Papa M; Alberghina L; Colangelo AM; Bertolazzi P
    BMC Syst Biol; 2016 Mar; 10():25. PubMed ID: 26935435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks.
    de la Fuente van Bentem S; Mentzen WI; de la Fuente A; Hirt H
    Proteomics; 2008 Nov; 8(21):4453-65. PubMed ID: 18972525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.