These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 33608822)
1. The effect of high-frequency rTMS of the left dorsolateral prefrontal cortex on the resolution of response, semantic and task conflict in the colour-word Stroop task. Parris BA; Wadsley MG; Arabaci G; Hasshim N; Augustinova M; Ferrand L Brain Struct Funct; 2021 May; 226(4):1241-1252. PubMed ID: 33608822 [TBL] [Abstract][Full Text] [Related]
2. Potential impact of bifrontal transcranial random noise stimulation (tRNS) on the semantic Stroop effect and its resting-state EEG correlates. Dondé C; Brevet-Aeby C; Poulet E; Mondino M; Brunelin J Neurophysiol Clin; 2019 Jun; 49(3):243-248. PubMed ID: 30930187 [TBL] [Abstract][Full Text] [Related]
3. Modulation of Emotional Conflict Processing by High-Definition Transcranial Direct Current Stimulation (HD-TDCS). Kuehne M; Schmidt K; Heinze HJ; Zaehle T Front Behav Neurosci; 2019; 13():224. PubMed ID: 31680891 [TBL] [Abstract][Full Text] [Related]
4. The Important Role of the Right Dorsolateral Prefrontal Cortex in Conflict Adaptation: A Combined Voxel-Based Morphometry and Continuous Theta Burst Stimulation Study. Xu P; Lin F; Alimu G; Zhang J; Jin Z; Li L J Cogn Neurosci; 2024 Jun; 36(6):1172-1183. PubMed ID: 38579250 [TBL] [Abstract][Full Text] [Related]
5. The influence of rTMS over the right dorsolateral prefrontal cortex on top-down attentional processes. Vanderhasselt MA; De Raedt R; Baeken C; Leyman L; Clerinx P; D'haenen H Brain Res; 2007 Mar; 1137(1):111-6. PubMed ID: 17229406 [TBL] [Abstract][Full Text] [Related]
6. The influence of rTMS over the left dorsolateral prefrontal cortex on Stroop task performance. Vanderhasselt MA; De Raedt R; Baeken C; Leyman L; D'haenen H Exp Brain Res; 2006 Feb; 169(2):279-82. PubMed ID: 16418843 [TBL] [Abstract][Full Text] [Related]
7. Modulation of Conflict Processing by Theta-Range tACS over the Dorsolateral Prefrontal Cortex. Lehr A; Henneberg N; Nigam T; Paulus W; Antal A Neural Plast; 2019; 2019():6747049. PubMed ID: 31360162 [TBL] [Abstract][Full Text] [Related]
8. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task. Chen Z; Lei X; Ding C; Li H; Chen A Neuroimage; 2013 Feb; 66():577-84. PubMed ID: 23103691 [TBL] [Abstract][Full Text] [Related]
9. Is There Semantic Conflict in the Stroop Task? Burca M; Beaucousin V; Chausse P; Ferrand L; Parris BA; Augustinova M Exp Psychol; 2021 Sep; 68(5):274-283. PubMed ID: 34911356 [No Abstract] [Full Text] [Related]
10. Stop interfering: Stroop task conflict independence from informational conflict and interference. Kalanthroff E; Goldfarb L; Usher M; Henik A Q J Exp Psychol (Hove); 2013; 66(7):1356-67. PubMed ID: 23163896 [TBL] [Abstract][Full Text] [Related]
11. Perturbation of the right prefrontal cortex disrupts interference control. Friehs MA; Klaus J; Singh T; Frings C; Hartwigsen G Neuroimage; 2020 Nov; 222():117279. PubMed ID: 32828926 [TBL] [Abstract][Full Text] [Related]
12. Causal underpinnings of working memory and Stroop interference control: Testing the effects of anodal and cathodal tDCS over the left DLPFC. Baumert A; Buchholz N; Zinkernagel A; Clarke P; MacLeod C; Osinsky R; Schmitt M Cogn Affect Behav Neurosci; 2020 Feb; 20(1):34-48. PubMed ID: 31183619 [TBL] [Abstract][Full Text] [Related]
13. Assessing stimulus-stimulus (semantic) conflict in the Stroop task using saccadic two-to-one color response mapping and preresponse pupillary measures. Hasshim N; Parris BA Atten Percept Psychophys; 2015 Nov; 77(8):2601-10. PubMed ID: 26272367 [TBL] [Abstract][Full Text] [Related]
14. cTBS to Right DLPFC Modulates Physiological Correlates of Conflict Processing: Evidence from a Stroop task. Xu P; Wang S; Yang Y; Guragai B; Zhang Q; Zhang J; Jin Z; Li L Brain Topogr; 2024 Jan; 37(1):37-51. PubMed ID: 37880501 [TBL] [Abstract][Full Text] [Related]
15. A Representational Similarity Analysis of Cognitive Control during Color-Word Stroop. Freund MC; Bugg JM; Braver TS J Neurosci; 2021 Sep; 41(35):7388-7402. PubMed ID: 34162756 [TBL] [Abstract][Full Text] [Related]
16. The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. Li Y; Wang L; Jia M; Guo J; Wang H; Wang M PLoS One; 2017; 12(6):e0179430. PubMed ID: 28614399 [TBL] [Abstract][Full Text] [Related]
17. Brain Functional Mechanisms in Attentional Processing Following Modified Conflict Stroop Task. M J; M Z; J K; S A K; H S; N G J Biomed Phys Eng; 2020 Aug; 10(4):493-506. PubMed ID: 32802797 [TBL] [Abstract][Full Text] [Related]
18. Linear increases in BOLD response associated with increasing proportion of incongruent trials across time in a colour Stroop task. Mitchell RL Exp Brain Res; 2010 May; 203(1):193-204. PubMed ID: 20336280 [TBL] [Abstract][Full Text] [Related]
19. Stimulation of Dorsolateral Prefrontal Cortex Enhances Adaptive Cognitive Control: A High-Definition Transcranial Direct Current Stimulation Study. Gbadeyan O; McMahon K; Steinhauser M; Meinzer M J Neurosci; 2016 Dec; 36(50):12530-12536. PubMed ID: 27974612 [TBL] [Abstract][Full Text] [Related]
20. Stimulus and response conflict from a second language: Stroop interference in weakly-bilingual and recently-trained languages. Šaban I; Schmidt JR Acta Psychol (Amst); 2021 Jul; 218():103360. PubMed ID: 34218077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]