These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33608965)

  • 21. Mineralized Polyamide66/Calcium Chloride Nanofibers for Bone Tissue Engineering.
    Niu X; Zhao L; Yin M; Huang D; Wang N; Wei Y; Hu Y; Lian X; Chen W
    Tissue Eng Part C Methods; 2020 Jul; 26(7):352-363. PubMed ID: 32458747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs).
    Wang Z; Liang R; Jiang X; Xie J; Cai P; Chen H; Zhan X; Lei D; Zhao J; Zheng L
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109796. PubMed ID: 31500029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells.
    Haslauer CM; Moghe AK; Osborne JA; Gupta BS; Loboa EG
    J Biomater Sci Polym Ed; 2011; 22(13):1695-712. PubMed ID: 20836922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.
    Gao X; Song J; Ji P; Zhang X; Li X; Xu X; Wang M; Zhang S; Deng Y; Deng F; Wei S
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3499-515. PubMed ID: 26756224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal cycling effect on osteogenic differentiation of MC3T3-E1 cells loaded on 3D-porous Biphasic Calcium Phosphate (BCP) scaffolds for early osteogenesis.
    Sayed S; Faruq O; Hossain M; Im SB; Kim YS; Lee BT
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110027. PubMed ID: 31546388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.
    Kim B; Ventura R; Lee BT
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorapatite-modified scaffold on dental pulp stem cell mineralization.
    Guo T; Li Y; Cao G; Zhang Z; Chang S; Czajka-Jakubowska A; Nör JE; Clarkson BH; Liu J
    J Dent Res; 2014 Dec; 93(12):1290-5. PubMed ID: 25139361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fundamental parameters of chitosan in polymer scaffolds affecting osteoblasts (MC3T3-E1).
    Suphasiriroj W; Yotnuengnit P; Surarit R; Pichyangkura R
    J Mater Sci Mater Med; 2009 Jan; 20(1):309-20. PubMed ID: 18791666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition.
    Wongsupa N; Nuntanaranont T; Kamolmattayakul S; Thuaksuban N
    J Mater Sci Mater Med; 2017 Feb; 28(2):25. PubMed ID: 28070691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2.
    Subramanian G; Bialorucki C; Yildirim-Ayan E
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():16-27. PubMed ID: 25842103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endothelial Cell Migration on Poly(ε-caprolactone) Nanofibers Coated with a Nanohybrid Shish-Kebab Structure Mimicking Collagen Fibrils.
    Guo X; Wang X; Li X; Jiang YC; Han S; Ma L; Guo H; Wang Z; Li Q
    Biomacromolecules; 2020 Mar; 21(3):1202-1213. PubMed ID: 31895550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro biocompatibility analysis of novel nano-biphasic calcium phosphate scaffolds in different composition ratios.
    Ebrahimi M; Pripatnanont P; Suttapreyasri S; Monmaturapoj N
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):52-61. PubMed ID: 23847019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect.
    Kim JH; Linh NT; Min YK; Lee BT
    J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation.
    Ho MH; Liao MH; Lin YL; Lai CH; Lin PI; Chen RM
    Int J Nanomedicine; 2014; 9():4293-304. PubMed ID: 25246786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Growth Factor-Free Co-Culture System of Osteoblasts and Peripheral Blood Mononuclear Cells for the Evaluation of the Osteogenesis Potential of Melt-Electrowritten Polycaprolactone Scaffolds.
    Hammerl A; Diaz Cano CE; De-Juan-Pardo EM; van Griensven M; Poh PSP
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30823680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of Plasma Treated Electrospun Polycaprolactone (PCL) Nanofiber Scaffold for Bone Tissue Engineering.
    Ko YM; Choi DY; Jung SC; Kim BH
    J Nanosci Nanotechnol; 2015 Jan; 15(1):192-5. PubMed ID: 26328328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.