These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 33609065)
1. Size- and charge-dependent modulation of the lytic susceptibility and mechanical stability of fibrin-histone clots by heparin and polyphosphate variants. Komorowicz E; Balázs N; Tanka-Salamon A; Varga Z; Szabó L; Bóta A; Longstaff C; Kolev K J Thromb Haemost; 2021 May; 19(5):1307-1318. PubMed ID: 33609065 [TBL] [Abstract][Full Text] [Related]
2. Biorelevant polyanions stabilize fibrin against mechanical and proteolytic decomposition: Effects of polymer size and electric charge. Komorowicz E; Balázs N; Tanka-Salamon A; Varga Z; Szabó L; Bóta A; Longstaff C; Kolev K J Mech Behav Biomed Mater; 2020 Feb; 102():103459. PubMed ID: 31604180 [TBL] [Abstract][Full Text] [Related]
3. DNA and histones impair the mechanical stability and lytic susceptibility of fibrin formed by staphylocoagulase. Komorowicz E; Farkas VJ; Szabó L; Cherrington S; Thelwell C; Kolev K Front Immunol; 2023; 14():1233128. PubMed ID: 37662916 [TBL] [Abstract][Full Text] [Related]
4. Polyphosphate nanoparticles enhance the fibrin stabilization by histones more efficiently than linear polyphosphates. Lovas M; Tanka-Salamon A; Beinrohr L; Voszka I; Szabó L; Molnár K; Kolev K PLoS One; 2022; 17(4):e0266782. PubMed ID: 35468161 [TBL] [Abstract][Full Text] [Related]
5. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Varjú I; Longstaff C; Szabó L; Farkas ÁZ; Varga-Szabó VJ; Tanka-Salamon A; Machovich R; Kolev K Thromb Haemost; 2015 Jun; 113(6):1289-98. PubMed ID: 25789443 [TBL] [Abstract][Full Text] [Related]
6. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. Longstaff C; Varjú I; Sótonyi P; Szabó L; Krumrey M; Hoell A; Bóta A; Varga Z; Komorowicz E; Kolev K J Biol Chem; 2013 Mar; 288(10):6946-56. PubMed ID: 23293023 [TBL] [Abstract][Full Text] [Related]
7. Fibrin structure, viscoelasticity and lysis face the interplay of biorelevant polyions. Komorowicz E; Kolev K Curr Opin Hematol; 2022 Sep; 29(5):244-250. PubMed ID: 35916559 [TBL] [Abstract][Full Text] [Related]
8. Extracellular Histones Inhibit Fibrinolysis through Noncovalent and Covalent Interactions with Fibrin. Locke M; Longstaff C Thromb Haemost; 2021 Apr; 121(4):464-476. PubMed ID: 33131044 [TBL] [Abstract][Full Text] [Related]
9. Effects of low molecular weight heparins on fibrin polymerization and clot sensitivity to t-PA-induced lysis. Parise P; Morini M; Agnelli G; Ascani A; Nenci GG Blood Coagul Fibrinolysis; 1993 Oct; 4(5):721-7. PubMed ID: 8292721 [TBL] [Abstract][Full Text] [Related]
10. Polyphosphate modifies the fibrin network and down-regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin. Mutch NJ; Engel R; Uitte de Willige S; Philippou H; Ariëns RA Blood; 2010 May; 115(19):3980-8. PubMed ID: 20228273 [TBL] [Abstract][Full Text] [Related]
12. Fibrin clots obtained from plasma containing heparin show a higher sensitivity to t-PA-induced lysis. Nenci GG; Parise P; Morini M; Rossini A; Agnelli G Blood Coagul Fibrinolysis; 1992 Jun; 3(3):279-85. PubMed ID: 1643205 [TBL] [Abstract][Full Text] [Related]
13. Histones Differentially Modulate the Anticoagulant and Profibrinolytic Activities of Heparin, Heparin Derivatives, and Dabigatran. Ammollo CT; Semeraro N; Carratù MR; Colucci M; Semeraro F J Pharmacol Exp Ther; 2016 Feb; 356(2):305-13. PubMed ID: 26578266 [TBL] [Abstract][Full Text] [Related]
14. Cell-Free DNA Modulates Clot Structure and Impairs Fibrinolysis in Sepsis. Gould TJ; Vu TT; Stafford AR; Dwivedi DJ; Kim PY; Fox-Robichaud AE; Weitz JI; Liaw PC Arterioscler Thromb Vasc Biol; 2015 Dec; 35(12):2544-53. PubMed ID: 26494232 [TBL] [Abstract][Full Text] [Related]
15. Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems. Longstaff C; Hogwood J; Gray E; Komorowicz E; Varjú I; Varga Z; Kolev K Thromb Haemost; 2016 Mar; 115(3):591-9. PubMed ID: 26632486 [TBL] [Abstract][Full Text] [Related]
16. Lytic and mechanical stability of clots composed of fibrin and blood vessel wall components. Rottenberger Z; Komorowicz E; Szabó L; Bóta A; Varga Z; Machovich R; Longstaff C; Kolev K J Thromb Haemost; 2013 Mar; 11(3):529-38. PubMed ID: 23279194 [TBL] [Abstract][Full Text] [Related]
17. Extracellular histones promote fibrinolysis by single-chain urokinase-type plasminogen activator in a factor seven activating protease-dependent way. Semeraro F; Ammollo CT; Semeraro N; Colucci M Thromb Res; 2020 Dec; 196():193-199. PubMed ID: 32891905 [TBL] [Abstract][Full Text] [Related]
18. Lytic Susceptibility, Structure, and Mechanical Properties of Fibrin in Systemic Lupus Erythematosus. Litvinov RI; Nabiullina RM; Zubairova LD; Shakurova MA; Andrianova IA; Weisel JW Front Immunol; 2019; 10():1626. PubMed ID: 31379831 [TBL] [Abstract][Full Text] [Related]
19. Interactions of heparin and a covalently-linked antithrombin-heparin complex with components of the fibrinolytic system. Chander A; Atkinson HM; Stevic I; Berry LR; Kim PY; Chan AK Thromb Haemost; 2013 Dec; 110(6):1180-8. PubMed ID: 24048327 [TBL] [Abstract][Full Text] [Related]
20. [Heparin effect on hydrolysis of fibrin clots in a bull and a man with varying fibrinolytic systems]. Makogonenko EM Ukr Biokhim Zh (1978); 1997; 69(5-6):109-16. PubMed ID: 9606832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]