BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 336091)

  • 1. Proline transport activity in Escherichia coli membrane vesicles of different buoyant densities.
    van Heerikhuizen H; Boekhout M; Witholt B
    Biochim Biophys Acta; 1977 Nov; 470(3):453-64. PubMed ID: 336091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural heterogeneity of the cytoplasmic and outer membranes of Escherichia coli.
    De Leij L; Witholt B
    Biochim Biophys Acta; 1977 Nov; 471(1):92-104. PubMed ID: 336093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic membrane vesicles of Escherichia coli. A simple method for preparing the cytoplasmic and outer membranes.
    Yamato I; Anraku Y; Hirosawa K
    J Biochem; 1975 Apr; 77(4):705-18. PubMed ID: 125274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional mosaicism of membrane proteins in vesicles of Escherichia coli.
    Adler LW; Rosen BP
    J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transport of calcium in inverted membrane vesicles of Escherichia coli.
    Rosen BP; McClees JS
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5042-6. PubMed ID: 4373740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal by bovine serum albumin of fatty acids from membrane vesicles and its effect on proline transport activity in Escherichia coli.
    Goto K; Mizushima S
    J Biochem; 1978 Aug; 84(2):251-8. PubMed ID: 359539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation by detergents of the proline transport system in membrane vesicles from Escherichia coli and its reactivation by bovine serum albumin.
    Mizushima S
    Biochim Biophys Acta; 1976 Jan; 419(2):261-70. PubMed ID: 764873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between phospholipid compositions and transport activities of amino acids in Escherichia coli membrane vesicles.
    Ohta T; Okuda S; Takahashi H
    Biochim Biophys Acta; 1977 Apr; 466(1):44-56. PubMed ID: 322713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of lipids with branched-chain fatty acids on the physical, morphological and functional properties of Escherichia coli cytoplasmic membrane.
    Legendre S; Letellier L; Shechter E
    Biochim Biophys Acta; 1980 Nov; 602(3):491-505. PubMed ID: 6776984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid and protein segregation in Escherichia coli membrane: morphological and structural study of different cytoplasmic membrane fractions.
    Letellier L; Moudden H; Shechter E
    Proc Natl Acad Sci U S A; 1977 Feb; 74(2):452-6. PubMed ID: 322126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active transport of maltose in membrane vesicles obtained from Escherichia coli cells producing tethered maltose-binding protein.
    Dean DA; Fikes JD; Gehring K; Bassford PJ; Nikaido H
    J Bacteriol; 1989 Jan; 171(1):503-10. PubMed ID: 2644203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of outer membrane fragments from normally growing Escherichia coli.
    Hoekstra D; van der Laan JW; de Leij L; Witholt B
    Biochim Biophys Acta; 1976 Dec; 455(3):889-99. PubMed ID: 793634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between temperature range of growth and structural transitions in membranes and lipids of Escherichia coli K12.
    Janoff AS; Gupte S; McGroarty EJ
    Biochim Biophys Acta; 1980 Jun; 598(3):641-6. PubMed ID: 6992869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane in Escherichia coli.
    Poolman B; Konings WN; Robillard GT
    Eur J Biochem; 1983 Sep; 135(1):41-6. PubMed ID: 6349997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relations between structure and function in cytoplasmic membrane vesicles isolated from an Escherichia coli fatty-acid auxotroph. High-angle x-ray diffraction, freeze-etch electron microscopy and transport studies.
    Shechter E; Letellier L; Gulik-Krzywicki G
    Eur J Biochem; 1974 Nov; 49(1):61-76. PubMed ID: 4617681
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of a low density cytoplasmic membrane subfraction isolated from Escherichia coli.
    van Heerikhuizen H; Kwak E; van Bruggen EF; Witholt B
    Biochim Biophys Acta; 1975 Dec; 413(2):177-91. PubMed ID: 1103977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the absolute number of Escherichia coli membrane vesicles that catalyze active transport.
    Short SA; Kaback HR; Kaczorowski G; Fisher J; Walsh CT; Silverstein SC
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5032-6. PubMed ID: 4612538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate transport in membrane vesicles from Escherichia coli.
    Konings WN; Rosenberg H
    Biochim Biophys Acta; 1978 Apr; 508(2):370-8. PubMed ID: 346064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional lac carrier proteins in cytoplasmic membrane vesicles isolated from Escherichia coli. 2. Experimental evidence for a segregation of the lac carrier proteins induced by a conformational transition of the membrane lipids.
    Letellier L; Weil R; Shechter E
    Biochemistry; 1977 Aug; 16(17):3777-80. PubMed ID: 332222
    [No Abstract]   [Full Text] [Related]  

  • 20. Conversion of active transport vesicles of Escherichia coli into oxidative phosphorylation vesicles.
    Mével-Ninio M; Yamamoto T
    Biochim Biophys Acta; 1974 Jul; 357(1):63-6. PubMed ID: 4606390
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.