BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 33609511)

  • 1. Corneal biomechanics: Measurement and structural correlations.
    Chong J; Dupps WJ
    Exp Eye Res; 2021 Apr; 205():108508. PubMed ID: 33609511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
    Lan G; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo characterization of corneal biomechanics.
    Piñero DP; Alcón N
    J Cataract Refract Surg; 2014 Jun; 40(6):870-87. PubMed ID: 24857436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers.
    Zvietcovich F; Pongchalee P; Meemon P; Rolland JP; Parker KJ
    Nat Commun; 2019 Oct; 10(1):4895. PubMed ID: 31653846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis.
    Maczynska E; Karnowski K; Szulzycki K; Malinowska M; Dolezyczek H; Cichanski A; Wojtkowski M; Kaluzny B; Grulkowski I
    J Biophotonics; 2019 Feb; 12(2):e201800154. PubMed ID: 30239154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-Static Optical Coherence Elastography to Characterize Human Corneal Biomechanical Properties.
    Kling S; Torres-Netto EA; Spiru B; Sekundo W; Hafezi F
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):29. PubMed ID: 32539132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics in Keratoconus Diagnosis.
    Esporcatte LPG; Salomão MQ; Lopes BT; Sena N; Ferreira É; Filho JBRF; Machado AP; Ambrósio R
    Curr Eye Res; 2023 Feb; 48(2):130-136. PubMed ID: 35184637
    [No Abstract]   [Full Text] [Related]  

  • 9. In vivo noninvasive measurement of spatially resolved corneal elasticity in human eyes using Lamb wave optical coherence elastography.
    Jin Z; Chen S; Dai Y; Bao C; Ye S; Zhou Y; Wang Y; Huang S; Wang Y; Shen M; Zhu D; Lu F
    J Biophotonics; 2020 Aug; 13(8):e202000104. PubMed ID: 32368840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII.
    Nair A; Ambekar YS; Zevallos-Delgado C; Mekonnen T; Sun M; Zvietcovich F; Singh M; Aglyamov S; Koch M; Scarcelli G; Espana EM; Larin KV
    Invest Ophthalmol Vis Sci; 2022 Nov; 63(12):24. PubMed ID: 36383352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute alcohol consumption modulates corneal biomechanical properties as revealed by optical coherence elastography.
    Mekonnen TT; Zevallos-Delgado C; Hatami M; Singh M; Aglyamov SR; Larin KV
    J Biomech; 2024 May; 169():112155. PubMed ID: 38761746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal biomechanics: a review.
    Piñero DP; Alcón N
    Clin Exp Optom; 2015 Mar; 98(2):107-16. PubMed ID: 25470213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes.
    Nguyen BA; Reilly MA; Roberts CJ
    Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument.
    Singh M; Han Z; Nair A; Schill A; Twa MD; Larin KV
    J Biomed Opt; 2017 Feb; 22(2):20502. PubMed ID: 28241272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of corneal biomechanical properties following penetrating keratoplasty and deep anterior lamellar keratoplasty for keratoconus.
    Ziaei M; Vellara HR; Gokul A; Ali NQ; McGhee CNJ; Patel DV
    Clin Exp Ophthalmol; 2020 Mar; 48(2):174-182. PubMed ID: 31705767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography.
    Singh M; Li J; Han Z; Wu C; Aglyamov SR; Twa MD; Larin KV
    J Refract Surg; 2016 Aug; 32(8):562-7. PubMed ID: 27505317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heartbeat optical coherence elastography: corneal biomechanics in vivo.
    Nair A; Singh M; Aglyamov S; Larin KV
    J Biomed Opt; 2021 Feb; 26(2):. PubMed ID: 33624461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography.
    Vantipalli S; Li J; Singh M; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2018 Apr; 95(4):299-308. PubMed ID: 29561496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography.
    Manapuram RK; Aglyamov SR; Monediado FM; Mashiatulla M; Li J; Emelianov SY; Larin KV
    J Biomed Opt; 2012 Oct; 17(10):100501. PubMed ID: 23223976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography.
    Nair A; Singh M; Aglyamov SR; Larin KV
    J Biomed Opt; 2020 May; 25(5):1-9. PubMed ID: 32372574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.