BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 33609511)

  • 21. Air puff induced corneal vibrations: theoretical simulations and clinical observations.
    Han Z; Tao C; Zhou D; Sun Y; Zhou C; Ren Q; Roberts CJ
    J Refract Surg; 2014 Mar; 30(3):208-13. PubMed ID: 24763727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography.
    Zhao Y; Zhu Y; Wang Y; Yang H; He X; Alvarez-Arenas TG; Li Y; Huang G
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noncontact Acoustic Micro-Tapping Optical Coherence Elastography for Quantification of Corneal Anisotropic Elasticity: In Vivo Rabbit Study.
    Kirby MA; Regnault G; Pelivanov I; O'Donnell M; Wang RK; Shen TT
    Transl Vis Sci Technol; 2023 Mar; 12(3):15. PubMed ID: 36930138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography.
    Han X; Zhang Y; Zhu Y; Zhao Y; Yang H; Liu G; Ai S; Wang Y; Xie C; Shi J; Zhang T; Huang G; He X
    Exp Biol Med (Maywood); 2022 Mar; 247(6):462-469. PubMed ID: 34861122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of Corneal Biomechanical Properties in Diabetes Mellitus Using the Ocular Response Analyzer and the Corvis ST.
    Ramm L; Herber R; Spoerl E; Pillunat LE; Terai N
    Cornea; 2019 May; 38(5):595-599. PubMed ID: 30681520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial mapping of corneal biomechanical properties using wave-based optical coherence elastography.
    Wang Q; Chen Y; Shen K; Zhou X; Shen M; Lu F; Zhu D
    J Biophotonics; 2024 Jun; 17(6):e202300534. PubMed ID: 38453148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term Evaluation of Corneal Biomechanical Properties After Corneal Cross-linking for Keratoconus: A 4-Year Longitudinal Study.
    Sedaghat MR; Momeni-Moghaddam H; Ambrósio R; Roberts CJ; Yekta AA; Danesh Z; Reisdorf S; Khabazkhoob M; Heidari HR; Sadeghi J
    J Refract Surg; 2018 Dec; 34(12):849-856. PubMed ID: 30540368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel acoustic radiation force optical coherence elastography based on ultrasmall ultrasound transducer for biomechanics evaluation of in vivo cornea.
    Zhu Y; Zhao Y; Shi J; Gomez Alvarez-Arenas TE; Yang H; Cai H; Zhang D; He X; Wu X
    J Biophotonics; 2023 Aug; 16(8):e202300074. PubMed ID: 37101410
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Lan G; Twa MD; Song C; Feng J; Huang Y; Xu J; Qin J; An L; Wei X
    Comput Struct Biotechnol J; 2023; 21():2664-2687. PubMed ID: 37181662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration.
    Lan G; Gu B; Larin KV; Twa MD
    Transl Vis Sci Technol; 2020 Apr; 9(5):3. PubMed ID: 32821475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties.
    Kling S; Akca IB; Chang EW; Scarcelli G; Bekesi N; Yun SH; Marcos S
    J R Soc Interface; 2014 Dec; 11(101):20140920. PubMed ID: 25320067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noninvasive Assessment of Corneal Crosslinking With Phase-Decorrelation Optical Coherence Tomography.
    Blackburn BJ; Gu S; Ford MR; de Stefano V; Jenkins MW; Dupps WJ; Rollins AM
    Invest Ophthalmol Vis Sci; 2019 Jan; 60(1):41-51. PubMed ID: 30601930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preoperative, intraoperative, and postoperative assessment of corneal biomechanics in refractive surgery.
    Dackowski EK; Lopath PD; Chuck RS
    Curr Opin Ophthalmol; 2020 Jul; 31(4):234-240. PubMed ID: 32452876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of biomechanical properties of the cornea: the ocular response analyzer.
    Terai N; Raiskup F; Haustein M; Pillunat LE; Spoerl E
    Curr Eye Res; 2012 Jul; 37(7):553-62. PubMed ID: 22559332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical diagnostics of the cornea.
    Esporcatte LPG; Salomão MQ; Lopes BT; Vinciguerra P; Vinciguerra R; Roberts C; Elsheikh A; Dawson DG; Ambrósio R
    Eye Vis (Lond); 2020; 7():9. PubMed ID: 32042837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Corneal biomechanics measured with the ocular response analyser in patients with unilateral open-angle glaucoma.
    Hirneiss C; Neubauer AS; Yu A; Kampik A; Kernt M
    Acta Ophthalmol; 2011 Mar; 89(2):e189-92. PubMed ID: 21288308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications.
    Ambrósio R; Correia FF; Lopes B; Salomão MQ; Luz A; Dawson DG; Elsheikh A; Vinciguerra R; Vinciguerra P; Roberts CJ
    Open Ophthalmol J; 2017; 11():176-193. PubMed ID: 28932334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brillouin microscopy: assessing ocular tissue biomechanics.
    Yun SH; Chernyak D
    Curr Opin Ophthalmol; 2018 Jul; 29(4):299-305. PubMed ID: 29771749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes.
    Tian L; Wang D; Wu Y; Meng X; Chen B; Ge M; Huang Y
    Acta Ophthalmol; 2016 Aug; 94(5):e317-24. PubMed ID: 25639340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography.
    De Stefano VS; Ford MR; Seven I; Dupps WJ
    PLoS One; 2018; 13(12):e0209480. PubMed ID: 30592752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.