BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 33609511)

  • 41. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography.
    De Stefano VS; Ford MR; Seven I; Dupps WJ
    PLoS One; 2018; 13(12):e0209480. PubMed ID: 30592752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of corneal biomechanical properties on intraocular pressure differences between an air-puff tonometer and the Goldmann applanation tonometer.
    Tranchina L; Lombardo M; Oddone F; Serrao S; Schiano Lomoriello D; Ducoli P
    J Glaucoma; 2013; 22(5):416-21. PubMed ID: 22366703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography.
    Mekonnen T; Lin X; Zevallos-Delgado C; Singh M; Aglyamov SR; Coulson-Thomas VJ; Larin KV
    J Biophotonics; 2022 Aug; 15(8):e202200022. PubMed ID: 35460537
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determining in vivo elasticity and viscosity with dynamic Scheimpflug imaging analysis in keratoconic and healthy eyes.
    Wang LK; Tian L; Zheng YP
    J Biophotonics; 2016 May; 9(5):454-63. PubMed ID: 26755237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New forays into measurement of ocular biomechanics.
    Hammelef E; Rapuano CJ; Benedetto DA; Syed ZA; Myers JS; Razeghinejad MR; Silver FH; Pulido JS
    Curr Opin Ophthalmol; 2024 May; 35(3):225-231. PubMed ID: 38484223
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Corvis ST Tonometer for Measuring Postoperative IOP in LASIK Patients.
    Hong J; Yu Z; Jiang C; Zhou X; Liu Z; Sun X; Xu J
    Optom Vis Sci; 2015 May; 92(5):589-95. PubMed ID: 25871871
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system.
    Alonso-Caneiro D; Karnowski K; Kaluzny BJ; Kowalczyk A; Wojtkowski M
    Opt Express; 2011 Jul; 19(15):14188-99. PubMed ID: 21934782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clinical Ocular Biomechanics: Where Are We after 20 Years of Progress?
    Yuhas PT; Roberts CJ
    Curr Eye Res; 2023 Feb; 48(2):89-104. PubMed ID: 36239188
    [No Abstract]   [Full Text] [Related]  

  • 49. Optical coherence elastography and its applications for the biomechanical characterization of tissues.
    Wang C; Zhu J; Ma J; Meng X; Ma Z; Fan F
    J Biophotonics; 2023 Dec; 16(12):e202300292. PubMed ID: 37774137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical coherence elastography for tissue characterization: a review.
    Wang S; Larin KV
    J Biophotonics; 2015 Apr; 8(4):279-302. PubMed ID: 25412100
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Importance and use of corneal biomechanics and its diagnostic utility.
    Ramirez-Miranda A; Mangwani-Mordani S; Arteaga-Rivera JY; Ambrosio R; Navas A; Graue-Hernandez EO; Valdez-Garcia JE
    Cir Cir; 2023; 91(6):848-857. PubMed ID: 38096874
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multimodal Heartbeat and Compression Optical Coherence Elastography for Mapping Corneal Biomechanics.
    Nair A; Singh M; Aglyamov SR; Larin KV
    Front Med (Lausanne); 2022; 9():833597. PubMed ID: 35479957
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel dynamic corneal response parameters in a practice use: a critical review.
    Jędzierowska M; Koprowski R
    Biomed Eng Online; 2019 Feb; 18(1):17. PubMed ID: 30760270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances.
    Zhou Y; Wang Y; Shen M; Jin Z; Chen Y; Zhou Y; Qu J; Zhu D
    J Biomed Opt; 2019 Oct; 24(10):1-7. PubMed ID: 31605471
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of the Goldmann Applanation Tonometer, the Dynamic Contour Tonometer, the Ocular Response Analyzer and the Corvis ST in Measuring Intraocular Pressure following FS-LASIK.
    Bao F; Huang W; Zhu R; Lu N; Wang Y; Li H; Wu S; Lin H; Wang J; Zheng X; Huang J; Li Y; Wang Q; Elsheikh A
    Curr Eye Res; 2020 Feb; 45(2):144-152. PubMed ID: 31869261
    [No Abstract]   [Full Text] [Related]  

  • 56. Characterization of Ocular Biomechanics in Pellucid Marginal Degeneration.
    Lenk J; Haustein M; Terai N; Spoerl E; Raiskup F
    Cornea; 2016 Apr; 35(4):506-9. PubMed ID: 26890659
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical Quality in Keratoconus Is Associated With Corneal Biomechanics.
    Shugyo A; Koh S; Inoue R; Ambrósio R; Miki A; Maeda N; Nishida K
    Cornea; 2021 Oct; 40(10):1276-1281. PubMed ID: 33332893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo.
    Sinha Roy A; Kurian M; Matalia H; Shetty R
    J Mech Behav Biomed Mater; 2015 Aug; 48():173-182. PubMed ID: 25955559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo.
    Li J; Wang S; Manapuram RK; Singh M; Menodiado FM; Aglyamov S; Emelianov S; Twa MD; Larin KV
    J Biomed Opt; 2013 Dec; 18(12):121503. PubMed ID: 24089292
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation.
    Kling S; Bekesi N; Dorronsoro C; Pascual D; Marcos S
    PLoS One; 2014; 9(8):e104904. PubMed ID: 25121496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.