BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33609661)

  • 1. Discovery of novel Hsp90 C-terminal domain inhibitors that disrupt co-chaperone binding.
    Mak OW; Sharma N; Reynisson J; Leung IKH
    Bioorg Med Chem Lett; 2021 Apr; 38():127857. PubMed ID: 33609661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of small molecule inhibitors of
    Batista FAH; Ramos SL; Tassone G; Leitão A; Montanari CA; Botta M; Mori M; Borges JC
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):639-649. PubMed ID: 32048531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual screening and biophysical studies lead to HSP90 inhibitors.
    Huang R; Ayine-Tora DM; Muhammad Rosdi MN; Li Y; Reynisson J; Leung IKH
    Bioorg Med Chem Lett; 2017 Jan; 27(2):277-281. PubMed ID: 27913182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
    Allan RK; Mok D; Ward BK; Ratajczak T
    J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of Novel Hsp90 C-Terminal Inhibitors Using 3D-Pharmacophores Derived from Molecular Dynamics Simulations.
    Tomašič T; Durcik M; Keegan BM; Skledar DG; Zajec Ž; Blagg BSJ; Bryant SD
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-terminal modulators of heat shock protein of 90 kDa (HSP90): State of development and modes of action.
    Bickel D; Gohlke H
    Bioorg Med Chem; 2019 Nov; 27(21):115080. PubMed ID: 31519378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Isoform-Selective Ligands for the Middle Domain of Heat Shock Protein 90 (Hsp90).
    Mak OW; Chand R; Reynisson J; Leung IKH
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31717777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation.
    Goode KM; Petrov DP; Vickman RE; Crist SA; Pascuzzi PE; Ratliff TL; Davisson VJ; Hazbun TR
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1992-2006. PubMed ID: 28495207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsp90: Friends, clients and natural foes.
    Verma S; Goyal S; Jamal S; Singh A; Grover A
    Biochimie; 2016 Aug; 127():227-40. PubMed ID: 27295069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs.
    Phillips JJ; Yao ZP; Zhang W; McLaughlin S; Laue ED; Robinson CV; Jackson SE
    J Mol Biol; 2007 Oct; 372(5):1189-203. PubMed ID: 17764690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions.
    Li L; Wang L; You QD; Xu XL
    J Med Chem; 2020 Mar; 63(5):1798-1822. PubMed ID: 31663736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting silibinin as a novobiocin-like Hsp90 C-terminal inhibitor: Computational modeling and experimental validation.
    Cuyàs E; Verdura S; Micol V; Joven J; Bosch-Barrera J; Encinar JA; Menendez JA
    Food Chem Toxicol; 2019 Oct; 132():110645. PubMed ID: 31254591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative approaches to Hsp90 modulation for the treatment of cancer.
    Hall JA; Forsberg LK; Blagg BS
    Future Med Chem; 2014 Sep; 6(14):1587-605. PubMed ID: 25367392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock protein 90 inhibitors as therapeutic agents.
    Gomez-Monterrey I; Sala M; Musella S; Campiglia P
    Recent Pat Anticancer Drug Discov; 2012 Sep; 7(3):313-36. PubMed ID: 22338602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Silico Discovery and Optimisation of a Novel Structural Class of Hsp90 C-Terminal Domain Inhibitors.
    Zajec Ž; Dernovšek J; Gobec M; Tomašič T
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone.
    Singh JK; Hutt DM; Tait B; Guy NC; Sivils JC; Ortiz NR; Payan AN; Komaragiri SK; Owens JJ; Culbertson D; Blair LJ; Dickey C; Kuo SY; Finley D; Dyson HJ; Cox MB; Chaudhary J; Gestwicki JE; Balch WE
    Cell Chem Biol; 2020 Mar; 27(3):292-305.e6. PubMed ID: 32017918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones.
    Li J; Soroka J; Buchner J
    Biochim Biophys Acta; 2012 Mar; 1823(3):624-35. PubMed ID: 21951723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a new series of potent diphenol HSP90 inhibitors by fragment merging and structure-based optimization.
    Ren J; Li J; Wang Y; Chen W; Shen A; Liu H; Chen D; Cao D; Li Y; Zhang N; Xu Y; Geng M; He J; Xiong B; Shen J
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2525-9. PubMed ID: 24751441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica.
    Singh M; Shah V; Tatu U
    J Mol Biol; 2014 Apr; 426(8):1786-98. PubMed ID: 24486610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.