These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33609715)

  • 21. Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats.
    Yu L; Hales CA
    Respir Res; 2011 Feb; 12(1):21. PubMed ID: 21294880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Penetrance of Severe Pulmonary Arterial Hypertension in Response to Vascular Endothelial Growth Factor Receptor 2 Blockade in a Genetically Prone Rat Model Is Reduced by Female Sex.
    Chaudhary KR; Deng Y; Yang A; Cober ND; Stewart DJ
    J Am Heart Assoc; 2021 Aug; 10(15):e019488. PubMed ID: 34315227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of chloroquine on the TRPC1, TRPC6, and CaSR in the pulmonary artery smooth muscle cells in hypoxia-induced experimental pulmonary artery hypertension.
    Kaymak E; Akin AT; Tufan E; Başaran KE; Taheri S; Özdamar S; Yakan B
    J Biochem Mol Toxicol; 2021 Feb; 35(2):e22636. PubMed ID: 32956540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of Inhaled Treprostinil Palmitil, Inhaled and Intravenous Treprostinil, and Oral Selexipag in a Sugen/Hypoxia Rat Model of Pulmonary Arterial Hypertension.
    Corboz MR; Plaunt AJ; Malinin VS; Li Z; Gauani H; Chun D; Cipolla D; Perkins WR; Chapman RW
    J Pharmacol Exp Ther; 2022 Oct; 383(1):103-116. PubMed ID: 36507843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation.
    Ikutomi M; Sahara M; Nakajima T; Minami Y; Morita T; Hirata Y; Komuro I; Nakamura F; Sata M
    J Mol Cell Cardiol; 2015 Sep; 86():121-35. PubMed ID: 26231083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth Factor Midkine Aggravates Pulmonary Arterial Hypertension via Surface Nucleolin.
    Kinoshita D; Shishido T; Takahashi T; Yokoyama M; Sugai T; Watanabe K; Tamura H; Nishiyama S; Takahashi H; Arimoto T; Miyamoto T; Watanabe T; Kishida S; Kadomatsu K; Abe JI; Takeishi Y; Konta T; Kubota I; Watanabe M
    Sci Rep; 2020 Jun; 10(1):10345. PubMed ID: 32587339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial Hypertension.
    Van der Feen DE; Kurakula K; Tremblay E; Boucherat O; Bossers GPL; Szulcek R; Bourgeois A; Lampron MC; Habbout K; Martineau S; Paulin R; Kulikowski E; Jahagirdar R; Schalij I; Bogaard HJ; Bartelds B; Provencher S; Berger RMF; Bonnet S; Goumans MJ
    Am J Respir Crit Care Med; 2019 Oct; 200(7):910-920. PubMed ID: 31042405
    [No Abstract]   [Full Text] [Related]  

  • 28. Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries.
    Peng X; Li HX; Shao HJ; Li GW; Sun J; Xi YH; Li HZ; Wang XY; Wang LN; Bai SZ; Zhang WH; Zhang L; Yang GD; Wu LY; Wang R; Xu CQ
    Mol Cell Biochem; 2014 Nov; 396(1-2):87-98. PubMed ID: 25063217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Berberine attenuates hypoxia-induced pulmonary arterial hypertension via bone morphogenetic protein and transforming growth factor-β signaling.
    Chen M; Shen H; Zhu L; Yang H; Ye P; Liu P; Gu Y; Chen S
    J Cell Physiol; 2019 Aug; 234(10):17482-17493. PubMed ID: 30786011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of mitochondrial fragmentation in microvascular endothelial cells isolated from the SU5416/hypoxia model of pulmonary arterial hypertension.
    Suresh K; Servinsky L; Jiang H; Bigham Z; Zaldumbide J; Huetsch JC; Kliment C; Acoba MG; Kirsch BJ; Claypool SM; Le A; Damarla M; Shimoda LA
    Am J Physiol Lung Cell Mol Physiol; 2019 Nov; 317(5):L639-L652. PubMed ID: 31461316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nestin represents a potential marker of pulmonary vascular remodeling in pulmonary arterial hypertension associated with congenital heart disease.
    Zhou JJ; Li H; Qian YL; Quan RL; Chen XX; Li L; Li Y; Wang PH; Meng XM; Jing XL; He JG
    J Mol Cell Cardiol; 2020 Dec; 149():41-53. PubMed ID: 32950539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Important Role of Endogenous Nerve Growth Factor Receptor in the Pathogenesis of Hypoxia-Induced Pulmonary Hypertension in Mice.
    Goten C; Usui S; Takashima SI; Inoue O; Yamaguchi K; Hashimuko D; Takeda Y; Nomura A; Sakata K; Kaneko S; Takamura M
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased MAO-A Activity Promotes Progression of Pulmonary Arterial Hypertension.
    Sun XQ; Peters EL; Schalij I; Axelsen JB; Andersen S; Kurakula K; Gomez-Puerto MC; Szulcek R; Pan X; da Silva Goncalves Bos D; Schiepers REJ; Andersen A; Goumans MJ; Vonk Noordegraaf A; van der Laarse WJ; de Man FS; Bogaard HJ
    Am J Respir Cell Mol Biol; 2021 Mar; 64(3):331-343. PubMed ID: 33264068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice.
    Raoul W; Wagner-Ballon O; Saber G; Hulin A; Marcos E; Giraudier S; Vainchenker W; Adnot S; Eddahibi S; Maitre B
    Respir Res; 2007 Jan; 8(1):8. PubMed ID: 17263874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypically Silent Bone Morphogenetic Protein Receptor 2 Mutations Predispose Rats to Inflammation-Induced Pulmonary Arterial Hypertension by Enhancing the Risk for Neointimal Transformation.
    Tian W; Jiang X; Sung YK; Shuffle E; Wu TH; Kao PN; Tu AB; Dorfmüller P; Cao A; Wang L; Peng G; Kim Y; Zhang P; Chappell J; Pasupneti S; Dahms P; Maguire P; Chaib H; Zamanian R; Peters-Golden M; Snyder MP; Voelkel NF; Humbert M; Rabinovitch M; Nicolls MR
    Circulation; 2019 Oct; 140(17):1409-1425. PubMed ID: 31462075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone Marrow-derived Cells Contribute to the Pathogenesis of Pulmonary Arterial Hypertension.
    Yan L; Chen X; Talati M; Nunley BW; Gladson S; Blackwell T; Cogan J; Austin E; Wheeler F; Loyd J; West J; Hamid R
    Am J Respir Crit Care Med; 2016 Apr; 193(8):898-909. PubMed ID: 26651104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aneurysm-type plexiform lesions form in supernumerary arteries in pulmonary arterial hypertension: potential therapeutic implications.
    Oshima K; Crockett ES; Joshi SR; McLendon JM; Matsumoto Y; McMurtry IF; Abe K; Oka M
    Am J Physiol Lung Cell Mol Physiol; 2019 Dec; 317(6):L805-L815. PubMed ID: 31577161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation into the role of H2-Ab1 in vascular remodeling in pulmonary arterial hypertension via Bioinformatics.
    Wang G; Wang Z
    BMC Pulm Med; 2024 Jul; 24(1):342. PubMed ID: 39010027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of Glucose-6-Phosphate Dehydrogenase Activity Attenuates Right Ventricle Pressure and Hypertrophy Elicited by VEGFR Inhibitor + Hypoxia.
    Kitagawa A; Jacob C; Jordan A; Waddell I; McMurtry IF; Gupte SA
    J Pharmacol Exp Ther; 2021 May; 377(2):284-292. PubMed ID: 33758056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficacy of the thromboxane receptor antagonist NTP42 alone, or in combination with sildenafil, in the sugen/hypoxia-induced model of pulmonary arterial hypertension.
    Mulvaney EP; Reid HM; Bialesova L; Mendes-Ferreira P; Adão R; Brás-Silva C; Kinsella BT
    Eur J Pharmacol; 2020 Dec; 889():173658. PubMed ID: 33121950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.