These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33609755)

  • 1. Optimised data-independent acquisition strategy recaptures the classification of early-stage hepatocellular carcinoma based on data-dependent acquisition.
    Weng S; Wang M; Zhao Y; Ying W; Qian X
    J Proteomics; 2021 Apr; 238():104152. PubMed ID: 33609755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry.
    Cho KC; Clark DJ; Schnaubelt M; Teo GC; Leprevost FDV; Bocik W; Boja ES; Hiltke T; Nesvizhskii AI; Zhang H
    Anal Chem; 2020 Mar; 92(6):4217-4225. PubMed ID: 32058701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
    Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M
    Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic overview of hepatocellular carcinoma cell lines and generation of the spectral library.
    Wang M; Weng S; Li C; Jiang Y; Qian X; Xu P; Ying W
    Sci Data; 2022 Nov; 9(1):732. PubMed ID: 36446815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Urinary Proteome Library Generation Methods on Data-Independent Acquisition MS Analysis and its Application in Normal Urinary Proteome Analysis.
    Zhao M; Liu X; Sun H; Guo Z; Liu X; Sun W
    Proteomics Clin Appl; 2019 Sep; 13(5):e1800152. PubMed ID: 31017348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results.
    Fernández-Costa C; Martínez-Bartolomé S; McClatchy DB; Saviola AJ; Yu NK; Yates JR
    J Proteome Res; 2020 Aug; 19(8):3153-3161. PubMed ID: 32510229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of data-dependent acquisition and data-independent acquisition in proteomics analysis of clinical lung cancer tissues constrained by blood contamination.
    Su T; Zhong Y; Zeng W; Zhang Y; Wang S; Cheng J; Yang H; Wei Y; Gong M
    Proteomics Clin Appl; 2022 May; 16(3):e2000099. PubMed ID: 34870900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics.
    Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L
    Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Dependent-Independent Acquisition (DDIA) Proteomics.
    Guan S; Taylor PP; Han Z; Moran MF; Ma B
    J Proteome Res; 2020 Aug; 19(8):3230-3237. PubMed ID: 32539411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing protein discoverability by data independent acquisition assisted by ion mobility mass spectrometry.
    Nys G; Nix C; Cobraiville G; Servais AC; Fillet M
    Talanta; 2020 Jun; 213():120812. PubMed ID: 32200919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data.
    Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ
    J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry.
    Kraut A; Louwagie M; Bruley C; Masselon C; Couté Y; Brun V; Hesse AM
    Methods Mol Biol; 2019; 1959():129-150. PubMed ID: 30852820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing data-independent acquisition (DIA) spectral library workflows for plasma proteomics studies.
    Rice SJ; Belani CP
    Proteomics; 2022 Sep; 22(17):e2200125. PubMed ID: 35708973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the Sensitivity and Reproducibility of Targeted Proteomic Analysis Using Data-Independent Acquisition for Serum and Cerebrospinal Fluid Proteins.
    Cho KC; Oh S; Wang Y; Rosenthal LS; Na CH; Zhang H
    J Proteome Res; 2021 Sep; 20(9):4284-4291. PubMed ID: 34384221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data Independent Acquisition Mass Spectrometry Enhanced Personalized Glycosylation Profiling of Haptoglobin in Hepatocellular Carcinoma.
    Pradita T; Chen YJ; Su TH; Chang KH; Chen PJ; Chen YJ
    J Proteome Res; 2024 Jul; ():. PubMed ID: 38994555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free absolute protein quantification with data-independent acquisition.
    He B; Shi J; Wang X; Jiang H; Zhu HJ
    J Proteomics; 2019 May; 200():51-59. PubMed ID: 30880166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical advances in proteomics: new developments in data-independent acquisition.
    Hu A; Noble WS; Wolf-Yadlin A
    F1000Res; 2016; 5():. PubMed ID: 27092249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PulseDIA: Data-Independent Acquisition Mass Spectrometry Using Multi-Injection Pulsed Gas-Phase Fractionation.
    Cai X; Ge W; Yi X; Sun R; Zhu J; Lu C; Sun P; Zhu T; Ruan G; Yuan C; Liang S; Lyu M; Huang S; Zhu Y; Guo T
    J Proteome Res; 2021 Jan; 20(1):279-288. PubMed ID: 32975123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.