These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33609854)

  • 1. Metabolic engineering: Towards water deficiency adapted crop plants.
    Yoshida T; Yamaguchi-Shinozaki K
    J Plant Physiol; 2021; 258-259():153375. PubMed ID: 33609854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The physiology of plant responses to drought.
    Gupta A; Rico-Medina A; Caño-Delgado AI
    Science; 2020 Apr; 368(6488):266-269. PubMed ID: 32299946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy during drought: function, regulation, and potential application.
    Tang J; Bassham DC
    Plant J; 2022 Jan; 109(2):390-401. PubMed ID: 34469611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants.
    Manna M; Thakur T; Chirom O; Mandlik R; Deshmukh R; Salvi P
    Physiol Plant; 2021 Jun; 172(2):847-868. PubMed ID: 33180329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants.
    Ali S; Khan N
    Microbiol Res; 2021 Aug; 249():126771. PubMed ID: 33930840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing yield on dry fields: molecular pathways with growing potential.
    Tenorio Berrío R; Nelissen H; Inzé D; Dubois M
    Plant J; 2022 Jan; 109(2):323-341. PubMed ID: 34695266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach.
    Tran LS; Nishiyama R; Yamaguchi-Shinozaki K; Shinozaki K
    GM Crops; 2010; 1(1):32-9. PubMed ID: 21912210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought.
    Rabara RC; Tripathi P; Rushton PJ
    OMICS; 2014 Oct; 18(10):601-14. PubMed ID: 25118806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance.
    Ghanem ME; Hichri I; Smigocki AC; Albacete A; Fauconnier ML; Diatloff E; Martinez-Andujar C; Lutts S; Dodd IC; Pérez-Alfocea F
    Plant Cell Rep; 2011 May; 30(5):807-23. PubMed ID: 21298270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants.
    Riyazuddin R; Nisha N; Singh K; Verma R; Gupta R
    Plant Cell Rep; 2022 Mar; 41(3):519-533. PubMed ID: 34057589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormone balance and abiotic stress tolerance in crop plants.
    Peleg Z; Blumwald E
    Curr Opin Plant Biol; 2011 Jun; 14(3):290-5. PubMed ID: 21377404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Mechanism Underlying the Effect of the Intraspecific Alternation of Seed Size on Plant Drought Tolerance.
    Yu F; Wan W; Lv MJ; Zhang JL; Meng LS
    J Agric Food Chem; 2020 Jan; 68(3):703-711. PubMed ID: 31904950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular processes induced in primed seeds-increasing the potential to stabilize crop yields under drought conditions.
    Wojtyla Ł; Lechowska K; Kubala S; Garnczarska M
    J Plant Physiol; 2016 Sep; 203():116-126. PubMed ID: 27174076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of
    Huque AKMM; So W; Noh M; You MK; Shin JS
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant aquaporins: A frontward to make crop plants drought resistant.
    Ahmed S; Kouser S; Asgher M; Gandhi SG
    Physiol Plant; 2021 Jun; 172(2):1089-1105. PubMed ID: 33826759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription factors as molecular switches regulating plant responses to drought stress.
    Wei H; Wang X; Wang K; Tang X; Zhang N; Si H
    Physiol Plant; 2024; 176(3):e14366. PubMed ID: 38812034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolite-mediated adaptation of crops to drought and the acquisition of tolerance.
    Zhang F; Rosental L; Ji B; Brotman Y; Dai M
    Plant J; 2024 May; 118(3):626-644. PubMed ID: 38241088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks.
    Schulz P; Piepenburg K; Lintermann R; Herde M; Schöttler MA; Schmidt LK; Ruf S; Kudla J; Romeis T; Bock R
    Plant Biotechnol J; 2021 Jan; 19(1):74-86. PubMed ID: 32623825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis.
    Li J; Guo X; Zhang M; Wang X; Zhao Y; Yin Z; Zhang Z; Wang Y; Xiong H; Zhang H; Todorovska E; Li Z
    Plant Sci; 2018 May; 270():131-139. PubMed ID: 29576066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.